skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient quadrature rules for finite element discretizations of nonlocal equations
In this paper, we design efficient quadrature rules for finite element (FE) discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work, we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the “mollified” solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient FE assembly.  more » « less
Award ID(s):
1912902
PAR ID:
10378982
Author(s) / Creator(s):
Date Published:
Journal Name:
Numerical methods for partial differential equations
Volume:
38
Issue:
6
ISSN:
1098-2426
Page Range / eLocation ID:
1767-1793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we introduce a new nonlocal modal hydrodynamic theory for fluid–structure interactions (FSI) of light, flexible cantilever beams and plates undergoing small amplitude vibrations in Newtonian, incompressible, viscous, heavy fluids otherwise at rest. For low aspect ratio flexible structures and high mode numbers, three dimensional (3D) and nonlocal fluid effects become prominent drivers of the coupled dynamics, to the point that existing local hydrodynamic theories based on two dimensional (2D) fluid approximations become inadequate to predict the system response. On the other hand, our approach is based on a rigorous, yet efficient, 3D treatment of the hydrodynamic loading on cantilevered thin structures. The off-line solution of the FSI problem results in the so-called nonlocal modal hydrodynamic function matrix, that is, the representation of the nonlocal hydrodynamic load operator on a basis formed by the structural modes. Our theory then integrates the nonlocal hydrodynamics within a fully coupled structural modal model in the frequency domain. We compare and discuss our theory predictions in terms of frequency response functions, mode shapes, hydrodynamic loads, quality factors, added mass ratios with the predictions of the classical local approaches, for different actuation scenarios, identifying the limitations of the hypotheses underlying existing treatments. Importantly, we also validate our new model with experiments conducted on flexible square plates. While computationally efficient, our fully coupled theory is exact up to numerical truncation and can bridge knowledge gaps in the design and analysis of FSI systems based on low aspect ratio flexible beams and plates. 
    more » « less
  2. The formation of desiccation cracks in unsaturated soils as a discontinuity phenomenon can compromise the integrity of civil infrastructure on unsaturated soils. Because of the singularity at such discontinuities, the mathematical modeling of desiccation cracking is challenging. In this study, we apply a coupled nonlocal peridynamic poroelastic framework to model desiccation cracking in unsaturated soils. The soil skeleton is modeled by a nonlocal peridynamic elastic solid. A peridynamic equivalence of the generalized Darcy’s law is utilized to model unsaturated fluid flow. Cracking is determined by a critical stretch criterion between material points as well as an energy criterion. We present numerical simulations of desiccation cracking in soil bars and thin soil discs for one-dimensional cracking and two-dimensional cracking networks, respectively. The numerical results have demonstrated that the proposed nonlocal mathematical framework is a promising and robust method for modeling desiccation cracking in unsaturated soils. 
    more » « less
  3. Abstract In this article we formulate a stable computational nonlocal poromechanics model for dynamic analysis of saturated porous media. As a novelty, the stabilization formulation eliminates zero‐energy modes associated with the original multiphase correspondence constitutive models in the coupled nonlocal poromechanics model. The two‐phase stabilization scheme is formulated based on an energy method that incorporates inhomogeneous solid deformation and fluid flow. In this method, the nonlocal formulations of skeleton strain energy and fluid flow dissipation energy equate to their local formulations. The stable coupled nonlocal poromechanics model is solved for dynamic analysis by an implicit time integration scheme. As a new contribution, we validate the coupled stabilization formulation by comparing numerical results with analytical and finite element solutions for one‐dimensional and two‐dimensional dynamic problems in saturated porous media. Numerical examples of dynamic strain localization in saturated porous media are presented to demonstrate the efficacy of the stable coupled poromechanics framework for localized failure under dynamic loads. 
    more » « less
  4. In this paper, we consider a class of discontinuous Galerkin (DG) methods for one-dimensional nonlocal diffusion (ND) problems. The nonlocal models, which are integral equations, are widely used in describing many physical phenomena with long-range interactions. The ND problem is the nonlocal analog of the classic diffusion problem, and as the interaction radius (horizon) vanishes, then the nonlocality disappears and the ND problem converges to the classic diffusion problem. Under certain conditions, the exact solution to the ND problem may exhibit discontinuities, setting it apart from the classic diffusion problem. Since the DG method shows its great advantages in resolving problems with discontinuities in computational fluid dynamics over the past several decades, it is natural to adopt the DG method to compute the ND problems. Based on [Q. Du, L. Ju, J. Lu and X. Tian,Commun. Appl. Math. Comput. 2 (2020) 31–55], we develop the DG methods with different penalty terms, ensuring that the proposed DG methods have local counterparts as the horizon vanishes. This indicates the proposed methods will converge to the existing DG schemes as the horizon vanishes, which is crucial for achievingasymptotic compatibility. Rigorous proofs are provided to demonstrate the stability, error estimates, and asymptotic compatibility of the proposed DG schemes. To observe the effect of the nonlocal diffusion, we also consider the time-dependent convection–diffusion problems with nonlocal diffusion. We conduct several numerical experiments, including accuracy tests and Burgers’ equation with nonlocal diffusion, and various horizons are taken to show the good performance of the proposed algorithm and validate the theoretical findings. 
    more » « less
  5. Assigning weights to a large pool of objects is a fundamental task in a wide variety of applications. In this article, we introduce the concept of structured high-dimensional probability simplexes, in which most components are zero or near zero and the remaining ones are close to each other. Such structure is well motivated by (i) high-dimensional weights that are common in modern applications, and (ii) ubiquitous examples in which equal weights -- despite their simplicity -- often achieve favorable or even state-of-the-art predictive performance. This particular structure, however, presents unique challenges partly because, unlike high-dimensional linear regression, the parameter space is a simplex and pattern switching between partial constancy and sparsity is unknown. To address these challenges, we propose a new class of double spike Dirichlet priors to shrink a probability simplex to one with the desired structure. When applied to ensemble learning, such priors lead to a Bayesian method for structured high-dimensional ensembles that is useful for forecast combination and improving random forests, while enabling uncertainty quantification. We design efficient Markov chain Monte Carlo algorithms for implementation. Posterior contraction rates are established to study large sample behaviors of the posterior distribution. We demonstrate the wide applicability and competitive performance of the proposed methods through simulations and two real data applications using the European Central Bank Survey of Professional Forecasters data set and a data set from the UC Irvine Machine Learning Repository (UCI). 
    more » « less