skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1912902

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid‐structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric multigrid (GMG) algorithm is used, where for the multigrid level subsolvers, a field‐split (FS) preconditioner is proposed. The block structure of the FS preconditioner is derived using the physical variables as splitting strategy. To solve the subsystems originated by the FS preconditioning, an additive Schwarz (AS) block strategy is employed. The proposed FS preconditioner is tested on biomedical FSI applications. Both 2D and 3D simulations are carried out considering aneurysm and venous valve geometries. The performance of the FS preconditioner is compared with that of a second preconditioner of pure domain decomposition type. 
    more » « less
  2. In this paper, we design efficient quadrature rules for finite element (FE) discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work, we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the “mollified” solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient FE assembly. 
    more » « less
  3. We present a computational study of several preconditioning techniques for the GMRES algorithm applied to the stochastic diffusion equation with a lognormal coefficient discretized with the stochastic Galerkin method. The clear block structure of the system matrix arising from this type of discretization motivates the analysis of preconditioners designed according to a field-splitting strategy of the stochastic variables. This approach is inspired by a similar procedure used within the framework of physics based preconditioners for deterministic problems, and its application to stochastic PDEs represents the main novelty of this work. Our numerical investigation highlights the superior properties of the field-split type preconditioners over other existing strategies in terms of computational time and stochastic parameter dependence. 
    more » « less
  4. null (Ed.)
    The unsigned p-Willmore functional introduced in the work of Mondino [2011] generalizes important geometric functionals, which measure the area and Willmore energy of immersed surfaces. Presently, techniques from the work of Dziuk [2008] are adapted to compute the first variation of this functional as a weak-form system of equations, which are subsequently used to develop a model for the p-Willmore flow of closed surfaces in R 3 . This model is amenable to constraints on surface area and enclosed volume and is shown to decrease the p-Willmore energy monotonically. In addition, a penalty-based regularization procedure is formulated to prevent artificial mesh degeneration along the flow; inspired by a conformality condition derived in the work of Kamberov et al. [1996], this procedure encourages angle-preservation in a closed and oriented surface immersion as it evolves. Following this, a finite-element discretization of both procedures is discussed, an algorithm for running the flow is given, and an application to mesh editing is presented. 
    more » « less