skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short-distance gene flow and morphological divergence in Eschscholzia parishii (Papaveraceae): implications for speciation in desert winter annuals
Abstract Winter annuals comprise a large fraction of warm-desert plant species, but the drivers of their diversity are little understood. One factor that has generally been overlooked is the lack of obvious means of long-distance seed dispersal in many desert-annual lineages, which could lead to genetic differentiation at small spatial scales and, ultimately, to speciation and narrow endemism. If our gene-flow hypothesis is correct, individual winter-annual species should have populations with genetic spatial structures implying short distances of gene flow. To test this idea, we sampled six populations of Eschscholzia parishii (Papaveraceae) in three pairs of watersheds within a 28-km radius in southern California. We quantified genetic diversity and structure and inferred the distance of gene flow in these populations using single nucleotide polymorphisms derived from genotyping-by-sequencing. Estimated distances of gene flow were quite small (σ = 10.4–14.9 m), with strong genetic structure observed within and between populations. Kinship declined steeply with ln distance (r2 = 0.85). Petal size and shape differed significantly between the northernmost and southernmost populations. These findings support the hypothesis that the high diversity of warm-desert winter annuals might result, in part, from genetic differentiation within species at small spatial scales driven by poor seed dispersal.  more » « less
Award ID(s):
1655611
PAR ID:
10379029
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Botanical Journal of the Linnean Society
Volume:
200
Issue:
2
ISSN:
0024-4074
Page Range / eLocation ID:
255 to 269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The relative importance of separation by distance and by environment to population genetic diversity can be conveniently tested in river networks, where these two drivers are often independently distributed over space. To evaluate the importance of dispersal and environmental conditions in shaping microbial population structures, we performed genome‐resolved metagenomic analyses of benthicMicrocoleus‐dominated cyanobacterial mats collected in the Eel and Russian River networks (California, USA). The 64 Microcoleusgenomes were clustered into three species that shared >96.5% average nucleotide identity (ANI). Most mats were dominated by one strain, but minor alleles within mats were often shared, even over large spatial distances (>300 km). Within the most commonMicrocoleusspecies, the ANI between the dominant strains within mats decreased with increasing spatial separation. However, over shorter spatial distances (tens of kilometres), mats from different subwatersheds had lower ANI than mats from the same subwatershed, suggesting that at shorter spatial distances environmental differences between subwatersheds in factors like canopy cover, conductivity, and mean annual temperature decreases ANI. Since mats in smaller creeks had similar levels of nucleotide diversity (π) as mats in larger downstream subwatersheds, within‐mat genetic diversity does not appear to depend on the downstream accumulation of upstream‐derived strains. The four‐gamete test and sequence length bias suggest recombination occurs between almost all strains within each species, even between populations separated by large distances or living in different habitats. Overall, our results show that, despite some isolation by distance and environmental conditions, sufficient gene‐flow occurs among cyanobacterial strains to prevent either driver from producing distinctive population structures across the watershed. 
    more » « less
  2. Abstract Premise Pollen movement is a crucial component of dispersal in seed plants. Although pollen dispersal is well studied, methodological constraints have made it challenging to directly track pollen flow within multiple populations across landscapes. We labeled pollen with quantum dots, a new technique that overcomes past limitations, to evaluate the spatial scale of pollen dispersal and its relationship with conspecific density within 11 populations of Clarkia xantiana subsp. xantiana , a bee‐pollinated annual plant. Methods We used experimental arrays in two years to track pollen movement across distances of 5–35 m within nine populations and across distances of 10–70 m within two additional populations. We tested for distance decay of pollen dispersal, whether conspecific density modulated dispersal distance, and whether dispersal kernels varied among populations across an environmentally complex landscape. Results Labeled pollen receipt did not decline with distance over 35 m within eight of nine populations or over 70 m within either of two populations. Pollen receipt increased with conspecific density. Overall, dispersal kernels were consistent across populations. Conclusions The surprising uniformity in dispersal distance within different populations was likely influenced by low precipitation and plant density in our study years. This suggests that spatiotemporal variation in the abiotic environment substantially influences the extent of gene flow within and among populations. 
    more » « less
  3. Abstract Relatively little is known about the processes shaping population structure in cooperatively breeding insect species, despite the long-hypothesized importance of population structure in shaping patterns of cooperative breeding. Polistes paper wasps are primitively eusocial insects, with a cooperative breeding system in which females often found nests in cooperative associations. Prior mark-recapture studies of Polistes have documented extreme female philopatry, although genetic studies frequently fail to detect the strong population structure expected for highly philopatric species. Together these findings have led to lack of consensus on the degree of dispersal and population structure in these species. This study assessed population structure of female Polistes fuscatus wasps at three scales: within a single site, throughout Central New York, and across the Northeastern United States. Patterns of spatial genetic clustering and isolation by distance were observed in nuclear and mitochondrial genomes at the continental scale. Remarkably, population structure was evident even at fine spatial scales within a single collection site. However, P. fuscatus had low levels of genetic differentiation across long distances. These results suggest that P. fuscatus wasps may employ multiple dispersal strategies, including extreme natal philopatry as well as longer-distance dispersal. We observed greater genetic differentiation in mitochondrial genes than in the nuclear genome, indicative of increased dispersal distances in males. Our findings support the hypothesis that limited female dispersal contributes toward population structure in paper wasps. 
    more » « less
  4. Most cave-obligate species (troglobionts) have small ranges due to limited dispersal ability and the isolated nature of cave habitats. The troglobiontic linyphiid spiderPhanetta subterranea(Emerton, 1875), the only member of its genus, is a notable exception to this pattern; it has been reported from more counties and caves than any other troglobiont in North America. As many troglobionts exhibit significant genetic differentiation between populations over even small geographic distances, it has been hypothesized thatPhanettamay comprise multiple, genetically distinct lineages. To test this hypothesis, we examined genetic diversity inPhanettaacross its range at the mitochondrial cytochrome c oxidase subunit I gene for 47 individuals from 40 caves, distributed across seven states and 37 counties. We found limited genetic differentiation across the species’ range with haplotypes shared by individuals collected up to 600 km apart. Intraspecific nucleotide diversity was 0.006 +/- 0.005 (mean +/- SD), and the maximum genetic p-distance observed between any two individuals was 0.022. These values are within the typical range observed for other spider species. Thus, we found no evidence of cryptic genetic diversity inPhanetta. Our observation of low genetic diversity across such a broad distribution raises the question of how these troglobiontic spiders have managed to disperse so widely. 
    more » « less
  5. Burbrink, Frank (Ed.)
    Abstract In cryptic amphibian complexes, there is a growing trend to equate high levels of genetic structure with hidden cryptic species diversity. Typically, phylogenetic structure and distance-based approaches are used to demonstrate the distinctness of clades and justify the recognition of new cryptic species. However, this approach does not account for gene flow, spatial, and environmental processes that can obfuscate phylogenetic inference and bias species delimitation. As a case study, we sequenced genome-wide exons and introns to evince the processes that underlie the diversification of Philippine Puddle Frogs—a group that is widespread, phenotypically conserved, and exhibits high levels of geographically based genetic structure. We showed that widely adopted tree- and distance-based approaches inferred up to 20 species, compared to genomic analyses that inferred an optimal number of five distinct genetic groups. Using a suite of clustering, admixture, and phylogenetic network analyses, we demonstrate extensive admixture among the five groups and elucidate two specific ways in which gene flow can cause overestimations of species diversity: 1) admixed populations can be inferred as distinct lineages characterized by long branches in phylograms; and 2) admixed lineages can appear to be genetically divergent, even from their parental populations when simple measures of genetic distance are used. We demonstrate that the relationship between mitochondrial and genome-wide nuclear $$p$$-distances is decoupled in admixed clades, leading to erroneous estimates of genetic distances and, consequently, species diversity. Additionally, genetic distance was also biased by spatial and environmental processes. Overall, we showed that high levels of genetic diversity in Philippine Puddle Frogs predominantly comprise metapopulation lineages that arose through complex patterns of admixture, isolation-by-distance, and isolation-by-environment as opposed to species divergence. Our findings suggest that speciation may not be the major process underlying the high levels of hidden diversity observed in many taxonomic groups and that widely adopted tree- and distance-based methods overestimate species diversity in the presence of gene flow. [Cryptic species; gene flow; introgression; isolation-by-distance; isolation-by-environment; phylogenetic network; species delimitation.] 
    more » « less