skip to main content

Title: Printable hexagonal boron nitride ionogels
Due to its excellent chemical/thermal stability and mechanical robustness, hexagonal boron nitride (hBN) is a promising solid matrix material for ionogels. While bulk hBN ionogels have been employed in macroscopic applications such as lithium-ion batteries, hBN ionogel inks that are compatible with high-resolution printing have not yet been realized. Here, we describe aerosol jet-printable ionogels using exfoliated hBN nanoplatelets as the solid matrix. The hBN nanoplatelets are produced from bulk hBN powders by liquid-phase exfoliation, allowing printable hBN ionogel inks to be formulated following the addition of an imidazolium ionic liquid and ethyl lactate. The resulting inks are reliably printed with variable patterns and controllable thicknesses by aerosol jet printing, resulting in hBN ionogels that possess high room-temperature ionic conductivities and storage moduli of >3 mS cm −1 and >1 MPa, respectively. By integrating the hBN ionogel with printed semiconductors and electrical contacts, fully-printed thin-film transistors with operating voltages below 1 V are demonstrated on polyimide films. These devices exhibit desirable electrical performance and robust mechanical tolerance against repeated bending cycles, thus confirming the suitability of hBN ionogels for printed and flexible electronics.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Faraday Discussions
Page Range / eLocation ID:
92 to 104
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Manufacturing of printed electronics relies on the deposition of conductive liquid inks, typically onto polymeric or paper substrates. Among available conductive fillers for use in electronic inks, carbon nanotubes (CNTs) have high conductivity, low density, processability at low temperatures, and intrinsic mechanical flexibility. However, the electrical conductivity of printed CNT structures has been limited by CNT quality and concentration, and by the need for nonconductive modifiers to make the ink stable and extrudable. This study introduces a polymer‐free, printable aqueous CNT ink, and, via an ambient direct‐write printing process, presents the relationships between printing resolution, ink rheology, and ink‐substrate interactions. A model is constructed to predict printed feature sizes on impermeable substrates based on Wenzel wetting. Printed lines have conductivity up to 10 000 S m−1. The lines are flexible, with <5% change in DC resistance after 1000 bending cycles, and <3% change in DC resistance with a bending radius down to 1 mm. Demonstrations focus on i) conformality, via printing CNTs onto stickers that can be applied to curved surfaces, ii) interactivity using a CNT‐based button printed onto folded paper structure, and iii) capacitive sensing of liquid wicking into the substrate itself. Facile integration of surface mount components on printed circuits is enabled by the intrinsic adhesion of the wet ink.

    more » « less
  2. Abstract

    The proliferation and miniaturization of portable electronics require energy‐storage devices that are simultaneously compact, flexible, and amenable to scalable manufacturing. In this work, mechanically flexible micro‐supercapacitor arrays are demonstrated via sequential high‐speed screen printing of conductive graphene electrodes and a high‐temperature hexagonal boron nitride (hBN) ionogel electrolyte. By combining the superlative dielectric properties of 2D hBN with the high ionic conductivity of ionic liquids, the resulting hBN ionogel electrolyte enables micro‐supercapacitors with exceptional areal capacitances that approach 1 mF cm−2. Unlike incumbent polymer‐based electrolytes, the high‐temperature stability of the hBN ionogel electrolyte implies that the printed micro‐supercapacitors can be operated at unprecedentedly high temperatures up to 180 °C. These elevated operating temperatures result in increased power densities that make these printed micro‐supercapacitors particularly promising for applications in harsh environments such as underground exploration, aviation, and electric vehicles. The combination of enhanced functionality in extreme conditions and high‐speed production via scalable additive manufacturing significantly broadens the technological phase space for on‐chip energy storage.

    more » « less
  3. Abstract

    While 3D printing of rechargeable batteries has received immense interest in advancing the next generation of 3D energy storage devices, challenges with the 3D printing of electrolytes still remain. Additional processing steps such as solvent evaporation were required for earlier studies of electrolyte fabrication, which hindered the simultaneous production of electrode and electrolyte in an all‐3D‐printed battery. Here, a novel method is demonstrated to fabricate hybrid solid‐state electrolytes using an elevated‐temperature direct ink writing technique without any additional processing steps. The hybrid solid‐state electrolyte consists of solid poly(vinylidene fluoride‐hexafluoropropylene) matrices and a Li+‐conducting ionic‐liquid electrolyte. The ink is modified by adding nanosized ceramic fillers to achieve the desired rheological properties. The ionic conductivity of the inks is 0.78  × 10−3S cm−1. Interestingly, a continuous, thin, and dense layer is discovered to form between the porous electrolyte layer and the electrode, which effectively reduces the interfacial resistance of the solid‐state battery. Compared to the traditional methods of solid‐state battery assembly, the directly printed electrolyte helps to achieve higher capacities and a better rate performance. The direct fabrication of electrolyte from printable inks at an elevated temperature will shed new light on the design of all‐3D‐printed batteries for next‐generation electronic devices.

    more » « less
  4. Printable feedstocks that can produce lightweight, robust, and ductile structures with tunable and switchable conductivity are of considerable interest for numerous application spaces. Combining the specific properties of commodity thermoplastics with the unique electrical and redox properties of conducting polymers (CPs) presents new opportunities for the field of printed (bio)electronics. Here, we report on the direct ink write (DIW) printing of ink formulations based on polyaniline-dinonylnaphthalene sulfonic acid (PANI-DNNSA), which has been synthesized in bulk quantities (∼400 g). DNNSA imparts solubility to PANI up to 50 mg mL −1 , which allows the use of various additives to tune the rheological behavior of the inks without significantly compromising the electrical properties of the printed structures, which reach conductivities in the range of <10 −7 –10 0 S cm −1 as a function of ink formulation and post treatment used. Fumed silica (FS) and ultra-high molecular weight polystyrene (UHMW-PS) additives are leveraged to endow printability and shape retention to inks, as well as to compare the use of traditional rheological modifiers with commodity thermoplastics on CP feedstocks for tailored DIW printing. We show that the incorporation of UHMW-PS into these ink formulations is critical for obtaining high crack resistance in printed structures. This work serves as a guide for future ink designs of CPs with commodity thermoplastics and their subsequent DIW printing to yield conductive architectures and devices for various applications. 
    more » « less
  5. Three-dimensional printing (3DP) of functional materials is increasingly important for advanced applications requiring objects with complex or custom geometries or prints with gradients or zones with different properties. A common 3DP technique is direct ink writing (DIW), in which printable inks are comprised of a fluid matrix filled with solid particles, the latter of which can serve a dual purpose of rheology modifiers to enable extrusion and functional fillers for performance-related properties. Although the relationship between filler loading and viscosity has been described for many polymeric systems, a thorough description of the rheological properties of three-dimensional (3D) printable composites is needed to expedite the creation of new materials. In this manuscript, the relationship between filler loading and printability is studied using model paraffin/photopolymer composite inks containing between 0 and 73 vol. % paraffin microbeads. The liquid photopolymer resin is a Newtonian fluid, and incorporating paraffin microbeads increases the ink viscosity and imparts shear-thinning behavior, viscoelasticity, and thixotropy, as established by parallel plate rheometry experiments. Using Einstein and Batchelor's work on colloidal suspension rheology, models were developed to describe the thixotropic behavior of inks, having good agreement with experimental results. Each of these properties contributes to the printability of highly filled ([Formula: see text]43 vol. % paraffin) paraffin/photopolymer composite inks. Through this work, the ability to quantify the ideal rheological properties of a DIW ink and to selectively control and predict its rheological performance will facilitate the development of 3D printed materials with tunable functionalities, thus, advancing 3DP technology beyond current capabilities. 
    more » « less