skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: ENM2020: A Free Online Course and Set of Resources on Modeling Species' Niches and Distributions
The field of distributional ecology has seen considerable recent attention, particularly surrounding the theory, protocols, and tools for Ecological Niche Modeling (ENM) or Species Distribution Modeling (SDM). Such analyses have grown steadily over the past two decades—including a maturation of relevant theory and key concepts—but methodological consensus has yet to be reached. In response, and following an online course taught in Spanish in 2018, we designed a comprehensive English-language course covering much of the underlying theory and methods currently applied in this broad field. Here, we summarize that course, ENM2020, and provide links by which resources produced for it can be accessed into the future. ENM2020 lasted 43 weeks, with presentations from 52 instructors, who engaged with >2500 participants globally through >14,000 hours of viewing and >90,000 views of instructional video and question-and-answer sessions. Each major topic was introduced by an “Overview” talk, followed by more detailed lectures on subtopics. The hierarchical and modular format of the course permits updates, corrections, or alternative viewpoints, and generally facilitates revision and reuse, including the use of only the Overview lectures for introductory courses. All course materials are free and openly accessible (CC-BY license) to ensure these resources remain available to all interested in distributional ecology.  more » « less
Award ID(s):
1661510
NSF-PAR ID:
10379093
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Biodiversity Informatics
Volume:
17
ISSN:
1546-9735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robotics has emerged as one of the most popular subjects in STEM (Science, Technology, Engineering, and Mathematics) education for students in elementary, middle, and high schools, providing them with an opportunity to gain knowledge of engineering and technology. In recent years, flying robots (or drones) have also gained popularity as teaching tool to impart the fundamentals of computer programming to high school students. However, despite completing the programming course, students may still lack an understanding of the working principle of drones. This paper proposes an approach to teach students the basic principles of drone aeronautics through laboratory programming. This course was designed by professors from Vaughn College of Aeronautics and Technology for high school students who work on after-school and weekend programs during the school year or summer. In early 2021, the college applied for and was approved to offer a certificate program in UAS (Unmanned Aerial Systems) Designs, Applications, and Operations to college students by the Education Department of New York State. Later that year, the college also received a grant from the Federal Aviation Administration (FAA) to provide tuition-free early higher education for high school students, allowing them to complete the majority of the credits in the UAS certificate program while still enrolled in high school. The program aims to equip students with the hands-on skills necessary for successful careers as versatile engineers and technicians. Most of the courses in the certificate program are introductory or application-oriented, such as Introduction to Drones, Drone Law, Part 107 License, or Fundamentals of Land Surveying and Photogrammetry. However, one of the courses, Introduction to Drone Aeronautics, is more focused on the theory of drone flight and control. Organizing the lectures and laboratory of the course for high school students who are interested in pursuing the certificate can be a challenge. To create the Introduction to Drone Aeronautics course, a variety of school courses and online resources were examined. After careful consideration, the Robolink Co-drone [1] was chosen as the experimental platform for students to study drone flight, and control and stabilize a drone. However, developing a set of comprehensible lectures proved to be a difficult task. Based on the requirements of the certificate program, the lectures were designed to cover the following topics: (a) an overview of fundamentals of drone flight principles, including the forces acting on a drone such as lift, weight, drag, and thrust, as well as the selection of on-board components and trade-offs for proper payload and force balance; (b) an introduction to the proportional-integral-directive (PID) controller and its role in stabilizing a drone and reducing steady-state errors; (c) an explanation of the forces acting on a drone in different coordinates, along with coordinate transformations; and (d) an opportunity for students to examine the dynamic model of a 3D quadcopter with control parameters, but do not require them to derive the 3D drone dynamic equations. In the future, the course can be improved to cater to the diverse learning needs of the students. More interactive and accessible tools can be developed to help different types of students understand drone aeronautics. For instance, some students may prefer to apply mathematical skills to derive results, while others may find it easier to comprehend the stable flight of a drone by visualizing the continuous changes in forces and balances resulting from the control of DC motor speeds. Despite the differences in students’ mathematical abilities, the course has helped high school students appreciate that mathematics is a powerful tool for solving complex problems in the real world, rather than just a subject of abstract numbers. 
    more » « less
  2. Traditionally, the generation and use of biodiversity data and their associated specimen objects have been primarily the purview of individuals and small research groups. While deposition of data and specimens in herbaria and other repositories has long been the norm, throughout most of their history, these resources have been accessible only to a small community of specialists. Through recent concerted efforts, primarily at the level of national and international governmental agencies over the last two decades, the pace of biodiversity data accumulation has accelerated, and a wider array of biodiversity scientists has gained access to this massive accumulation of resources, applying them to an ever‐widening compass of research pursuits. We review how these new resources and increasing access to them are affecting the landscape of biodiversity research in plants today, focusing on new applications across evolution, ecology, and other fields that have been enabled specifically by the availability of these data and the global scope that was previously beyond the reach of individual investigators. We give an overview of recent advances organized along three lines: broad‐scale analyses of distributional data and spatial information, phylogenetic research circumscribing large clades with comprehensive taxon sampling, and data sets derived from improved accessibility of biodiversity literature. We also review synergies between large data resources and more traditional data collection paradigms, describe shortfalls and how to overcome them, and reflect on the future of plant biodiversity analyses in light of increasing linkages between data types and scientists in our field.

     
    more » « less
  3. Abstract

    The burgeoning field of genomics as applied to personalized medicine, epidemiology, conservation, agriculture, forensics, drug development, and other fields comes with large computational and bioinformatics costs, which are often inaccessible to student trainees in classroom settings at universities. However, with increased availability of resources such as NSF XSEDE, Google Cloud, Amazon AWS, and other high-performance computing (HPC) clouds and clusters for educational purposes, a growing community of academicians are working on teaching the utility of HPC resources in genomics and big data analyses. Here, I describe the successful implementation of a semester-long (16 week) upper division undergraduate/graduate level course in Computational Genomics and Bioinformatics taught at San Diego State University in Spring 2022. Students were trained in the theory, algorithms and hands-on applications of genomic data quality control, assembly, annotation, multiple sequence alignment, variant calling, phylogenomic analyses, population genomics, genome-wide association studies, and differential gene expression analyses using RNAseq data on their own dedicated 6-CPU NSF XSEDE Jetstream virtual machines. All lesson plans, activities, examinations, tutorials, code, lectures, and notes are publicly available at https://github.com/arunsethuraman/biomi609spring2022.

     
    more » « less
  4. null (Ed.)
    Therapeutics machine learning is an emerging field with incredible opportunities for innovatiaon and impact. However, advancement in this field requires formulation of meaningful learning tasks and careful curation of datasets. Here, we introduce Therapeutics Data Commons (TDC), the first unifying platform to systematically access and evaluate machine learning across the entire range of therapeutics. To date, TDC includes 66 AI-ready datasets spread across 22 learning tasks and spanning the discovery and development of safe and effective medicines. TDC also provides an ecosystem of tools and community resources, including 33 data functions and types of meaningful data splits, 23 strategies for systematic model evaluation, 17 molecule generation oracles, and 29 public leaderboards. All resources are integrated and accessible via an open Python library. We carry out extensive experiments on selected datasets, demonstrating that even the strongest algorithms fall short of solving key therapeutics challenges, including real dataset distributional shifts, multi-scale modeling of heterogeneous data, and robust generalization to novel data points. We envision that TDC can facilitate algorithmic and scientific advances and considerably accelerate machine-learning model development, validation and transition into biomedical and clinical implementation. TDC is an open-science initiative available at this https://tdcommons.ai. 
    more » « less
  5. Abstract Online video resources have increasingly become a common way to effectively share scientific research ideas and engage viewers at many levels of interest or expertise. While synthetic biology is a comparatively young field, it has accumulated online videos across a spectrum of content and technical depth. Such video content can be used to introduce viewers to synthetic biology, supplement college course content, teach new lab skills and entertain. Here, we compile online videos concerning synthetic biology into public YouTube playlists tailored for six different, though potentially overlapping, audiences: those wanting an introduction to synthetic biology, those wanting to get quick overviews of specific topics within synthetic biology, those wanting teaching or public lectures, those wanting more technical research lectures, those wanting to learn lab protocols and those interested in the International Genetically Engineered Machine competition. 
    more » « less