Abstract The spring bloom in the Southern Ocean is the rapid‐growth phase of the seasonal cycle in phytoplankton. Many previous studies have characterized the spring bloom using chlorophyll estimates from satellite ocean color observations. Assumptions regarding the chlorophyll‐to‐carbon ratio within phytoplankton and vertical structure of biogeochemical variables lead to uncertainty in satellite‐based estimates of phytoplankton carbon biomass. Here, we revisit the characterizations of the bloom using optical backscatter from biogeochemical floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling and Southern Ocean and Climate Field Studies with Innovative Tools projects. In particular, by providing a three‐dimensional view of the seasonal cycle, we are able to identify basin‐wide bloom characteristics corresponding to physical features; biomass is low in Ekman downwelling regions north of the Antarctic Circumpolar Current region and high within and south of the Antarctic Circumpolar Current.
more »
« less
Ocean mover’s distance: using optimal transport for analysing oceanographic data
Remote sensing observations from satellites and global biogeochemical models have combined to revolutionize the study of ocean biogeochemical cycling, but comparing the two data streams to each other and across time remains challenging due to the strong spatial-temporal structuring of the ocean. Here, we show that the Wasserstein distance provides a powerful metric for harnessing these structured datasets for better marine ecosystem and climate predictions. The Wasserstein distance complements commonly used point-wise difference methods such as the root-mean-squared error, by quantifying differences in terms of spatial displacement in addition to magnitude. As a test case, we consider chlorophyll (a key indicator of phytoplankton biomass) in the northeast Pacific Ocean, obtained from model simulations, in situ measurements, and satellite observations. We focus on two main applications: (i) comparing model predictions with satellite observations, and (ii) temporal evolution of chlorophyll both seasonally and over longer time frames. The Wasserstein distance successfully isolates temporal and depth variability and quantifies shifts in biogeochemical province boundaries. It also exposes relevant temporal trends in satellite chlorophyll consistent with climate change predictions. Our study shows that optimal transport vectors underlying the Wasserstein distance provide a novel visualization tool for testing models and better understanding temporal dynamics in the ocean.
more »
« less
- Award ID(s):
- 1748166
- PAR ID:
- 10379164
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 478
- Issue:
- 2262
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study develops a new regional model of the Southern Ocean including an improved representation of the iron biogeochemistry and ecosystem component, nesting within a biogeochemical ocean state estimate, and benchmarking with a suite of observations. The regional domain focuses on the Udintsev Fracture Zone (UFZ) in the central Pacific sector of the Southern Ocean. The UFZ is characterized by the deep gap between the Pacific‐Antarctic Ridge and the East Pacific Rise, which is one of the key “choke points” of the Antarctic Circumpolar Current where major Southern Ocean fronts are constrained within close proximity to this topographic feature. It is also a region of elevated mesoscale eddy activity, especially downstream of the UFZ. The model reproduces observed partial pressure of carbon dioxide in the surface water (pCO2) remarkably well from seasonal to interannual timescales relative to prior studies (r = 0.89). The seasonality of pCO2is difficult to simulate correctly because it is a small residual between the opposing influences of temperature and carbon. This model represents an intermittent double peak pattern of pCO2; one driven by the summertime high temperature and another from the wintertime high of dissolved inorganic carbon. The model also captures the spatial and temporal structure of the regional net primary production with respect to the satellite ocean color products (r = 0.57). The model is further validated by comparing it with biogeochemical float observations from the Southern Ocean Carbon and Climate Observations and Modeling project, revealing the model performance and challenges to accurately represent physical and biogeochemical properties in frontal regions.more » « less
-
Abstract Ocean chlorophyll time series exhibit temporal variability on a range of timescales due to environmental change, ecological interactions, dispersal, and other factors. The differences in chlorophyll temporal variability observed at stationary locations (Eulerian perspective) or following water parcels (Lagrangian perspective) are poorly understood. Here we contrasted the temporal variability of ocean chlorophyll in these two observational perspectives, using global drifter trajectories and satellite chlorophyll to generate matched pairs of Eulerian‐Lagrangian time series. We found that for most ocean locations, chlorophyll variances measured in Eulerian and Lagrangian perspectives are not statistically different. In high latitude areas, the two perspectives may capture similar variability due to the large spatial scale of chlorophyll patches. In localized regions of the ocean, however, chlorophyll variability measured in these two perspectives may significantly differ. For example, in some western boundary currents, temporal chlorophyll variability in the Lagrangian perspective was greater than in the Eulerian perspective. In these cases, the observing platform travels rapidly across strong environmental gradients and constrained by the shelf topography, potentially leading to greater Lagrangian variability in chlorophyll. In contrast, we found that Eulerian chlorophyll variability exceeded Lagrangian variability in some key upwelling zones and boundary current extensions. In these cases, variability in the nutrient supply may generate intermittent chlorophyll anomalies in the Eulerian perspective, while the Lagrangian perspective sees the transport of such anomalies off‐shore. These findings aid with the interpretation of chlorophyll time series from different sampling methodologies, inform observational network design, and guide validation of marine ecosystem models.more » « less
-
Abstract Southern Ocean (SO) phytoplankton chlorophyll is highly variable on sub‐seasonal time scales. Although the SO is the windiest ocean basin globally, it is not conclusively understood how storms impact SO phytoplankton dynamics. Much of our existing knowledge stems from satellites, but biases due to data gaps from cloud cover and low solar angles remain unquantified. Here, we use ocean–sea‐ice simulations with the Community Earth System Model to quantify the climatological 1997–2018 imprint of storms on chlorophyll and phytoplankton dynamics in the ice‐free SO. Additionally, by comparing the full‐field model output to synthetic satellite observations, we quantify sampling biases in satellite‐derived estimates. We find that both the sign and the magnitude of the average surface chlorophyll imprint vary substantially across storms but last for at least 4 days after the storm passing. Based on our analysis, more than one third of the storms explain the majority of local non‐seasonal chlorophyll variability, but satellite‐derived storm imprints are often too large in magnitude. On the day of the storm passing, changes in vertical mixing predominantly cause surface chlorophyll anomalies, and reduced light availability due to enhanced cloud cover outweighs the enhanced nutrient availability due to entrainment. Interestingly, storms imprint differently on total net primary production than on surface chlorophyll, demonstrating the difficulty to derive carbon‐cycle impacts from a surface‐chlorophyll assessment. With SO future storm activity projected to increase, complementing satellite observations with other observing technologies, for example, profiling floats, is necessary to better constrain how storms impact biological carbon cycling in the SO.more » « less
-
Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice.more » « less
An official website of the United States government

