skip to main content

Title: Stimulus: Accelerate Data Management for Scientific AI applications in HPC
Modern scientific workflows couple simulations with AI-powered analytics by frequently exchanging data to accelerate time-to-science to reduce the complexity of the simulation planes. However, this data exchange is limited in performance and portability due to a lack of support for scientific data formats in AI frameworks. We need a cohesive mechanism to effectively integrate at scale complex scientific data formats such as HDF5, PnetCDF, ADIOS2, GNCF, and Silo into popular AI frameworks such as TensorFlow, PyTorch, and Caffe. To this end, we designed Stimulus, a data management library for ingesting scientific data effectively into the popular AI frameworks. We utilize the StimOps functions along with StimPack abstraction to enable the integration of scientific data formats with any AI framework. The evaluations show that Stimulus outperforms several large-scale applications with different use-cases such as Cosmic Tagger (consuming HDF5 dataset in PyTorch), Distributed FFN (consuming HDF5 dataset in TensorFlow), and CosmoFlow (converting HDF5 into TFRecord and then consuming that in TensorFlow) by 5.3 x, 2.9 x, and 1.9 x respectively with ideal I/O scalability up to 768 GPUs on the Summit supercomputer. Through Stimulus, we can portably extend existing popular AI frameworks to cohesively support any complex scientific data format and efficiently scale the applications on large-scale supercomputers.  more » « less
Award ID(s):
1835764 1814872
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid)
Page Range / eLocation ID:
109 to 118
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors:,,,, ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  2. Scientific data analysis pipelines face scalability bottlenecks when processing massive datasets that consist of millions of small files. Such datasets commonly arise in domains as diverse as detecting supernovae and post-processing computational fluid dynamics simulations. Furthermore, applications often use inference frameworks such as TensorFlow and PyTorch whose naive I/O methods exacerbate I/O bottlenecks. One solution is to use scientific file formats, such as HDF5 and FITS, to organize small arrays in one big file. However, storing everything in one file does not fully leverage the heterogeneous data storage capabilities of modern clusters. This paper presents Henosis, a system that intercepts data accesses inside the HDF5 library and transparently redirects I/O to the in-memory Redis object store or the disk-based TileDB array store. During this process, Henosis consolidates small arrays into bigger chunks and intelligently places them in data stores. A critical research aspect of Henosis is that it formulates object consolidation and data placement as a single optimization problem. Henosis carefully constructs a graph to capture the I/O activity of a workload and produces an initial solution to the optimization problem using graph partitioning. Henosis then refines the solution using a hill-climbing algorithm which migrates arrays between data stores to minimize I/O cost. The evaluation on two real scientific data analysis pipelines shows that consolidation with Henosis makes I/O 300× faster than directly reading small arrays from TileDB and 3.5× faster than workload-oblivious consolidation methods. Moreover, jointly optimizing consolidation and placement in Henosis makes I/O 1.7× faster than strategies that perform consolidation and placement independently. 
    more » « less
  3. null (Ed.)
    The amazing advances being made in the fields of machine and deep learning are a highlight of the Big Data era for both enterprise and research communities. Modern applications require resources beyond a single node's ability to provide. However this is just a small part of the issues facing the overall data processing environment, which must also support a raft of data engineering for pre- and post-data processing, communication, and system integration. An important requirement of data analytics tools is to be able to easily integrate with existing frameworks in a multitude of languages, thereby increasing user productivity and efficiency. All this demands an efficient and highly distributed integrated approach for data processing, yet many of today's popular data analytics tools are unable to satisfy all these requirements at the same time. In this paper we present Cylon, an open-source high performance distributed data processing library that can be seamlessly integrated with existing Big Data and AI/ML frameworks. It is developed with a flexible C++ core on top of a compact data structure and exposes language bindings to C++, Java, and Python. We discuss Cylon's architecture in detail, and reveal how it can be imported as a library to existing applications or operate as a standalone framework. Initial experiments show that Cylon enhances popular tools such as Apache Spark and Dask with major performance improvements for key operations and better component linkages. Finally, we show how its design enables Cylon to be used cross-platform with minimum overhead, which includes popular AI tools such as PyTorch, Tensorflow, and Jupyter notebooks. 
    more » « less
  4. Deep learning has become the most popular direction in machine learning and artificial intelligence. However, the preparation of training data, as well as model training, are often time-consuming and become the bottleneck of the end-to-end machine learning lifecycle. Reusing models for inferring a dataset can avoid the costs of retraining. However, when there are multiple candidate models, it is challenging to discover the right model for reuse. Although there exist a number of model-sharing platforms such as ModelDB, TensorFlow Hub, PyTorch Hub, and DLHub, most of these systems require model uploaders to manually specify the details of each model and model downloaders to screen keyword search results for selecting a model. We are lacking a highly productive model search tool that selects models for deployment without the need for any manual inspection and/or labeled data from the target domain. This paper proposes multiple model search strategies including various similarity-based approaches and non-similarity-based approaches. We design, implement and evaluate these approaches on multiple model inference scenarios, including activity recognition, image recognition, text classification, natural language processing, and entity matching. The experimental evaluation showed that our proposed asymmetric similarity-based measurement, adaptivity, outperformed symmetric similarity-based measurements and non-similarity-based measurements in most of the workloads. 
    more » « less
  5. Research is increasingly showing the tremendous vulnerability in machine learning models to seemingly undetectable adversarial inputs. One of the current limitations in adversarial machine learning research is the incredibly time-consuming testing of novel defenses against various attacks and across multiple datasets, even with high computing power. To address this limitation, we have developed Jespipe as a new plugin-based, parallel-by-design Open MPI framework that aids in evaluating the robustness of machine learning models. The plugin-based nature of this framework enables researchers to specify any pre-training data manipulations, machine learning models, adversarial models, and analysis or visualization metrics with their input Python files. Because this framework is plugin-based, a researcher can easily incorporate model implementations using popular deep learning libraries such as PyTorch, Keras, TensorFlow, Theano, or MXNet, or adversarial robustness tools such as IBM’s Adversarial Robustness Toolbox or Foolbox. The parallelized nature of this framework also enables researchers to evaluate various learning or attack models with multiple datasets simultaneously by specifying all the models and datasets they would like to test with our XML control file template. Overall, Jespipe shows promising results by reducing latency in adversarial machine learning algorithm development and testing compared to traditional Jupyter notebook workflows. 
    more » « less