Abstract With success of silicon photonics having mature to foundry-readiness, the intrinsic limitations of the weak electro-optic effects in Silicon limit further device development. To overcome this, heterogeneous integration of emerging electrooptic materials into Si or SiN platforms are a promising path to deliver <1fJ/bit device-level efficiency, 50+Ghz fast switching, and <10's um^2 compact footprints. Graphene's Pauli blocking enables intriguing opportunities for device performance to include broadband absorption, unity-strong index modulation, low contact resistance. Similarly, ITO has shown ENZ behavior, and tunability for EOMs or EAMs. Here we review recent modulator advances all heterogeneously integrated on Si or SiN such as a) a DBR-enabled photonic 60 GHz graphene EAM, b) a hybrid plasmon graphene EAM of 100aJ/bit efficiency, d) the first ITO- based MZI showing a VpL = 0.52 V-mm, and e) a plasmonic ITO MZI with a record low VpL = 11 V- um. We conclude by discussing modulator scaling laws for a roadmap to achieve 10's aJ/bit devices.
more »
« less
Miniature, highly sensitive MOSCAP ring modulators in co-optimized electronic-photonic CMOS
Convergence of high-performance silicon photonics and electronics, monolithically integrated in state-of-the-art CMOS platforms, is the holy grail for enabling the ultimate efficiencies, performance, and scaling of electronic-photonic systems-on-chip. It requires the emergence of platforms that combine state-of-the-art RF transistors with optimized silicon photonics, and a generation of photonic device technology with ultralow energies, increased operating spectrum, and the elimination of power-hungry thermal tuning. In this paper, in a co-optimized monolithic electronics-photonics platform (GlobalFoundries 45CLO), we turn the metal-oxide-semiconductor (MOS) field-effect transistor’s basic structure into a novel, highly efficient MOS capacitor ring modulator. It has the smallest ring cavity (1.5 μm radius), largest corresponding spur-free free spectral range ( FSR = 8.5 THz ), and record 30 GHz/V shift efficiency in the O-band among silicon modulators demonstrated to date. With 1 V pp RF drive, we show an open optical eye while electro-optically tuning the modulator to track over 400 pm (69 GHz) change in the laser wavelength (using 2.5 V DC range). A 90 GHz maximum electro-optic resonance shift is demonstrated with under 40 nW of power, providing a strong nonthermal tuning mechanism in a CMOS photonics platform. The modulator has a separately optimized body layer but shares the gate device layer and the gate oxide with 45 nm transistors, while meeting all CMOS manufacturability design rules. This type of convergent evolution of electronics and photonics may be the future of platforms for high-performance systems-on-chip.
more »
« less
- Award ID(s):
- 2023751
- PAR ID:
- 10354876
- Date Published:
- Journal Name:
- Photonics Research
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2327-9125
- Page Range / eLocation ID:
- A1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We demonstrate device field characterization using NSOM collection and interaction measurement modes via the backside buried-oxide of large scale photonic circuits fabricated in monolithic electronics-photonics CMOS platforms (here a microdisk resonator) post-processed using flip-chip substrate-removal.more » « less
-
Abstract Silicon microring modulator plays a critical role in energy-efficient optical interconnect and optical computing owing to its ultra-compact footprint and capability for on-chip wavelength-division multiplexing. However, existing silicon microring modulators usually require more than 2 V of driving voltage (Vpp), which is limited by both material properties and device structures. Here, we present a metal-oxide-semiconductor capacitor microring modulator through heterogeneous integration between silicon photonics and titanium-doped indium oxide, which is a high-mobility transparent conductive oxide (TCO) with a strong plasma dispersion effect. The device is co-fabricated by Intel’s photonics fab and our in-house TCO patterning processes, which exhibits a high modulation efficiency of 117 pm/V and consequently can be driven by a very low Vppof 0.8 V. At a 11 GHz modulation bandwidth where the modulator is limited by the RC bandwidth, we obtained 25 Gb/s clear eye diagrams with energy efficiency of 53 fJ/bit.more » « less
-
We demonstrate a path to scalable, wavelength- multiplexed RF/mm-wave-photonic front-end systems-on-chip for radar and extreme massive MIMO arrays, in 300mm-foundry 45nm RF SOI CMOS. We demonstrate mm-wave-to-optical sensing elements comprising low-noise amplifiers (LNAs) mono- lithically integrated with triply-resonant photonic microring- resonator based modulators. The “photonic molecule” modulator concept breaks the conventional ring modulator conversion efficiency-bandwidth tradeoff and provides optimal performance RF-photonic applications, while supporting high bandwidth den- sities. We show a first experiment with projected noise figure of 24dB at 57GHz (30mW/element, -45dBm RF-input, 6dBm laser LO). The elements are tileable at small pitches, enabling photonic disaggregation of large-scale phased arrays.more » « less
-
Reed, Graham T.; Knights, Andrew P. (Ed.)An array of active photonic devices is fabricated in unison after a heterogeneous integration process first metal-eutectically bonds these distinct materials as a distribution onto a silicon host wafer. The patterning out of heterogeneous materials followed by the formation of all photonic devices allows for wide-area fine-alignment without the need for discrete die alignment or placement. The integration process is designed as a CMOS-compatible, scalable method for bringing together distinct III-V epitaxial structures and optical-waveguiding epitaxial structures, demonstrating the capabilities of forming a multi-chip layer of photonic materials. Integrated GaAs-based vertical light-emitting transistors (LET) are designed and fabricated as the active devices whose third electrical terminal provides an electrical interconnect and thermal dissipation path to the silicon host wafer. The performance of these devices as both electrical transistors and spontaneous-emission optical devices is compared to their monolithically-integrated counterparts to investigate improvements in device characteristics when integrated onto silicon. The fabrication methods are modified and optimized for thin-film transferred materials and are then extended to transistor laser (TL) fabrication. Passive waveguiding structures are designed and simulated for coupling light from the active devices, and their fabrication scheme is presented such that it can be similarly performed with transferred materials. Work toward the demonstration of integrated transistor lasers is shown to represent progress toward an electronic-photonic circuit network. The combination of heterogeneous integration with three-terminal photonic structures enables an elegant solution to both packaging and signal interconnect constraints for the implementation of photonic logic in silicon photonics systems.more » « less
An official website of the United States government

