skip to main content


Title: Cesium carbonate mediated C–H functionalization of perhalogenated 12-vertex carborane anions
C–H functionalization of undecahalogenated carborane anions, [HCB 11 X 11 − ] (X = Cl, Br, I), is performed with Cs 2 CO 3 in acetonitrile. We show that the requisite Cl, Br and I carborane dianions can all be efficiently accessed with Cs 2 CO 3 . The utilization of Cs 2 CO 3 eliminates the complications associated with competing E2 elimination reactions providing an efficient, more functional group tolerant, and broader scope than previously reported. The ensuing functionalized cages provide potential synthons for constructing advanced materials and other molecular architectures for various applications.  more » « less
Award ID(s):
2004497
NSF-PAR ID:
10379391
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
58
Issue:
25
ISSN:
1359-7345
Page Range / eLocation ID:
4060 to 4062
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state. 
    more » « less
  2. Abstract

    All‐inorganic metal halides such as Cs4PbX6and CsPbX3(X = Cl, Br, and I) are attracting global attention owing to their promise in optoelectronic applications. However, the presence of the toxic heavy metal lead (Pb) in these materials is a major concern. Here, a family of nontoxic high‐efficiency blue‐emitting all‐inorganic halides Rb2CuX3(X = Br and Cl) is reported; the compounds exhibit 1D crystal structures featuring anionic2−ribbons separated by Rb+cations. The measured record high photoluminescence quantum yield values range from 64% to 100% for Rb2CuBr3and Rb2CuCl3, respectively. Furthermore, the measured emission linewidths are quite narrow with full width at half maximum values of 54 and 52 nm for Rb2CuBr3and Rb2CuCl3, respectively. Single crystals of Rb2CuCl3demonstrate an anti‐Stokes photoluminescence signal, shown for the first time for Pb‐free metal halides. The discovery of highly efficient narrow blue emitters based on a nontoxic and inexpensive metal copper paves a way for the consideration of low‐cost and environmentally friendly copper halides for practical applications.

     
    more » « less
  3. Abstract

    Copper(I) halides are emerging as attractive alternatives to lead halide perovskites for optical and electronic applications. However, blue‐emitting all‐inorganic copper(I) halides suffer from poor stability and lack of tunability of their photoluminescence (PL) properties. Here, the preparation of silver(I) halides A2AgX3(A = Rb, Cs; X = Cl, Br, I) through solid‐state synthesis is reported. In contrast to the Cu(I) analogs, A2AgX3are broad‐band emitters sensitive to A and X site substitutions. First‐principle calculations show that defect‐bound excitons are responsible for the observed main PL peaks in Rb2AgX3and that self‐trapped excitons (STEs) contribute to a minor PL peak in Rb2AgBr3. This is in sharp contrast to Rb2CuX3, in which the PL is dominated by the emission by STEs. Moreover, the replacement of Cu(I) with Ag(I) in A2AgX3significantly improves photostability and stability in the air under ambient conditions, which enables their consideration for practical applications. Thus, luminescent inks based on A2AgX3are prepared and successfully used in anti‐counterfeiting applications. The excellent light emission properties, significantly improved stability, simple preparation method, and tunable light emission properties demonstrated by A2AgX3suggest that silver(I) halides may be attractive alternatives to toxic lead halide perovskites and unstable copper(I) halides for optical applications.

     
    more » « less
  4. Abstract

    Despite their compositional versatility, most halide double perovskites feature large band gaps. Herein, we describe a strategy for achieving small band gaps in this family of materials. The new double perovskites Cs2AgTlX6(X=Cl (1) and Br (2)) have direct band gaps of 2.0 and 0.95 eV, respectively, which are approximately 1 eV lower than those of analogous perovskites. To our knowledge, compound2displays the lowest band gap for any known halide perovskite. Unlike in AIBIIX3perovskites, the band‐gap transition in AI2BB′X6double perovskites can show substantial metal‐to‐metal charge‐transfer character. This band‐edge orbital composition is used to achieve small band gaps through the selection of energetically aligned B‐ and B′‐site metal frontier orbitals. Calculations reveal a shallow, symmetry‐forbidden region at the band edges for1, which results in long (μs) microwave conductivity lifetimes. We further describe a facile self‐doping reaction in2through Br2loss at ambient conditions.

     
    more » « less
  5. Abstract

    Despite their compositional versatility, most halide double perovskites feature large band gaps. Herein, we describe a strategy for achieving small band gaps in this family of materials. The new double perovskites Cs2AgTlX6(X=Cl (1) and Br (2)) have direct band gaps of 2.0 and 0.95 eV, respectively, which are approximately 1 eV lower than those of analogous perovskites. To our knowledge, compound2displays the lowest band gap for any known halide perovskite. Unlike in AIBIIX3perovskites, the band‐gap transition in AI2BB′X6double perovskites can show substantial metal‐to‐metal charge‐transfer character. This band‐edge orbital composition is used to achieve small band gaps through the selection of energetically aligned B‐ and B′‐site metal frontier orbitals. Calculations reveal a shallow, symmetry‐forbidden region at the band edges for1, which results in long (μs) microwave conductivity lifetimes. We further describe a facile self‐doping reaction in2through Br2loss at ambient conditions.

     
    more » « less