skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virtual Transcatheter Interventions for Peripheral Pulmonary Artery Stenosis in Williams and Alagille Syndromes
Background Despite favorable outcomes of surgical pulmonary artery (PA) reconstruction, isolated proximal stenting of the central PAs is common clinical practice for patients with peripheral PA stenosis in association with Williams and Alagille syndromes. Given the technical challenges of PA reconstruction and the morbidities associated with transcatheter interventions, the hemodynamic consequences of all treatment strategies must be rigorously assessed. Our study aims to model, assess, and predict hemodynamic outcomes of transcatheter interventions in these patients. Methods and Results Isolated proximal and “extensive” interventions (stenting and/or balloon angioplasty of proximal and lobar vessels) were performed in silico on 6 patient‐specific PA models. Autoregulatory adaptation of the cardiac output and downstream arterial resistance was modeled in response to intervention‐induced hemodynamic perturbations. Postintervention computational fluid dynamics predictions were validated in 2 stented patients and quantitatively assessed in 4 surgical patients. Our computational methods accurately predicted postinterventional PA pressures, the primary indicators of success for treatment of peripheral PA stenosis. Proximal and extensive treatment achieved median reductions of 14% and 40% in main PA systolic pressure, 27% and 56% in pulmonary vascular resistance, and 10% and 45% in right ventricular stroke work, respectively. Conclusions In patients with Williams and Alagille syndromes, extensive transcatheter intervention is required to sufficiently reduce PA pressures and right ventricular stroke work. Transcatheter therapy was shown to be ineffective for long‐segment stenosis and pales hemodynamically in comparison with published outcomes of surgical reconstruction. Regardless of the chosen strategy, a virtual treatment planning platform could identify lesions most critical for optimizing right ventricular afterload.  more » « less
Award ID(s):
2105345
PAR ID:
10379548
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Heart Association
Volume:
11
Issue:
6
ISSN:
2047-9980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundCongenital heart defects affect approximately 1% of births in the United States and Europe, with >1 million children in the United States living with congenital heart defects. Many experience abnormalities in the right ventricular outflow tract, often necessitating surgical intervention early in life. However, the initial repairs typically are temporary solutions as many patients will eventually need pulmonary valve replacement to address pulmonary valve regurgitation and prevent right ventricle failure. Addressing progressive pulmonary valve regurgitation, ideally in patients weighing 8 to 10 kg, is critical to prevent right ventricle dysfunction. Transcatheter pulmonary valve replacement currently treats patients weighing at least 20 kg. Unfortunately, smaller children must wait for valve replacement and risk right ventricular dilation. MethodsTo address this challenge, we have developed the IRIS Valve, a growth‐accommodating transcatheter pulmonary heart valve inspired by origami targeting implantation in at least 8 kg children. The valve stent underwent finite element analysis with validation by fracture testing. Using a 12‐Fr transcatheter system, the IRIS valve was implanted into 8 to 17 kg Yucatan mini pigs for 6 months. ResultsBenchtop fracture testing and finite element analysis confirmed the stent's ability to be crimped to a 3‐mm diameter for loading into a 12‐Fr transcatheter system and expanded to 20 mm without fracture. Animal studies successfully demonstrated excellent integration within the pulmonary valve annulus, intact valve integrity, and favorable tissue response. ConclusionsThe IRIS Valve offers a promising solution for earlier treatment of heart valve disease in pediatric patients with congenital heart defects, potentially improving outcomes in this vulnerable population. 
    more » « less
  2. IntroductionPrimary pulmonary vein stenosis (PVS) is a rare congenital heart disease that proves to be a clinical challenge due to the rapidly progressive disease course and high rates of treatment complications. PVS intervention is frequently faced with in-stent restenosis and persistent disease progression despite initial venous recanalization with balloon angioplasty or stenting. Alterations in wall shear stress (WSS) have been previously associated with neointimal hyperplasia and venous stenosis underlying PVS progression. Thus, the development of patient-specific three-dimensional (3D)in vitromodels is needed to further investigate the biomechanical outcomes of endovascular and surgical interventions. MethodsIn this study, deidentified computed tomography images from three patients were segmented to generate perfusable phantom models of pulmonary veins before and after catheterization. These 3D reconstructions were 3D printed using a clear resin ink and used in a benchtop experimental setup. Computational fluid dynamic (CFD) analysis was performed on modelsin silicoutilizing Doppler echocardiography data to represent thein vivoflow conditions at the inlets. Particle image velocimetry was conducted using the benchtop perfusion setup to analyze WSS and velocity profiles and the results were compared with those predicted by the CFD model. ResultsOur findings indicated areas of undesirable alterations in WSS before and after catheterization, in comparison with the published baseline levels in the healthyin vivotissues that may lead to regional disease progression. DiscussionThe established patient-specific 3Din vitromodels and the developedin vitro–in silicoplatform demonstrate great promise to refine interventional approaches and mitigate complications in treating patients with primary PVS. 
    more » « less
  3. Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations. 
    more » « less
  4. Abstract Tracheal stenosis, a severe airway narrowing, poses significant challenges in respiratory function and often necessitates surgical intervention to restore proper airflow. This study aims to demonstrate how computational fluid dynamics (CFD) can provide a non-invasive, efficient, and highly individualized approach to assist surgeons in modeling and planning various surgical strategies for treatment. The CFD-based approach in this study provides significant advantages, including reduced time and cost, and the ability to analyze complex pulmonary airflow characteristics that are difficult to investigate using in vitro and in vivo studies. This research compares three tracheal geometries: a diseased airway with tracheal stenosis and two post-surgical configurations from different surgical plans. Simulations were conducted under four inhalation flow rates, i.e., rest (6 L/min), normal (30 L/min), moderate (60 L/min), and intensive exercise (120 L/min), to evaluate the impact of surgical outcomes on pulmonary airflow dynamics. The upper airway, modeled with a mouth inlet diameter of 20 mm, exhibited average velocities of 0.32, 1.59, 3.18, and 6.37 m/s, corresponding to the respective flow rates. The laminar model was used for the rest flow rate, while the shear stress transport (SST) k-ω model was applied to simulate turbulence with higher inhalation flow rates. The results revealed substantial improvements in flow parameters following surgery. The stenotic geometry exhibited extreme resistance, with pressure drops increasing from 1.96 Pa at rest to 318.9 Pa under intensive flow, and high wall shear stress (WSS) values peaking at 330.8 Pa. Surgical Plan 1 reduced pressure drops by up to 47% and WSS by 97%, while Surgical Plan 2 achieved even greater reductions, with pressure drops lowered by 45% and WSS reduced to 2.54 Pa under high flow rates. Localized flow disturbances, such as uneven airflow distribution among lung lobes, were also alleviated post-surgery. In the diseased airway, the right lower lobe received up to 40% of the total flow, causing severe imbalances. Surgical Plan 2 achieved the most uniform distribution, with all lobes receiving 13%-29% of airflow across all flow rates, ensuring effective oxygenation and minimizing risks of overdistension or under-perfusion. These findings suggest that the CFD-based approach employed in this study can effectively model surgical outcomes, providing surgeons with a fast, detailed, and non-invasive tool for tailoring procedures to individual patient needs. 
    more » « less
  5. null (Ed.)
    Diastolic dysfunction is a common pathology occurring in about one third of patients affected by heart failure. This condition may not be associated with a marked decrease in cardiac output or systemic pressure and therefore is more difficult to diagnose than its systolic counterpart. Compromised relaxation or increased stiffness of the left ventricle induces an increase in the upstream pulmonary pressures, and is classified as secondary or group II pulmonary hypertension (2018 Nice classification). This may result in an increase in the right ventricular afterload leading to right ventricular failure. Elevated pulmonary pressures are therefore an important clinical indicator of diastolic heart failure (sometimes referred to as heart failure with preserved ejection fraction, HFpEF), showing significant correlation with associated mortality. However, accurate measurements of this quantity are typically obtained through invasive catheterization and after the onset of symptoms. In this study, we use the hemodynamic consistency of a differential-algebraic circulation model to predict pulmonary pressures in adult patients from other, possibly non-invasive, clinical data. We investigate several aspects of the problem, including the ability of model outputs to represent a sufficiently wide pathologic spectrum, the identifiability of the model's parameters, and the accuracy of the predicted pulmonary pressures. We also find that a classifier using the assimilated model parameters as features is free from the problem of missing data and is able to detect pulmonary hypertension with sufficiently high accuracy. For a cohort of 82 patients suffering from various degrees of heart failure severity, we show that systolic, diastolic, and wedge pulmonary pressures can be estimated on average within 8, 6, and 6 mmHg, respectively. We also show that, in general, increased data availability leads to improved predictions. 
    more » « less