We face complex global issues such as climate change that challenge our ability as humans to manage them. Models have been used as a pivotal science and engineering tool to investigate, represent, explain, and predict phenomena or solve problems that involve multi-faceted systems across many fields. To fully explain complex phenomena or solve problems using models requires both systems thinking (ST) and computational thinking (CT). This study proposes a theoretical framework that uses modeling as a way to integrate ST and CT. We developed a framework to guide the complex process of developing curriculum, learning tools, support strategies, and assessments for engaging learners in ST and CT in the context of modeling. The framework includes essential aspects of ST and CT based on selected literature, and illustrates how each modeling practice draws upon aspects of both ST and CT to support explaining phenomena and solving problems. We use computational models to show how these ST and CT aspects are manifested in modeling.
more » « less- PAR ID:
- 10379721
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Instructional Science
- Volume:
- 50
- Issue:
- 6
- ISSN:
- 0020-4277
- Page Range / eLocation ID:
- p. 933-960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Chinn, C. ; Tan, E. ; Chan, C. ; Kali, Y. (Ed.)We developed the Systems Thinking (ST) and Computational Thinking (CT) Identification Tool (ID Tool) to identify student involvement in ST and CT as they construct and revise computational models. Our ID Tool builds off the ST and CT Through Modeling Framework, emphasizing the synergistic relationship between ST and CT and demonstrating how both can be supported through computational modeling. This paper describes the process of designing and validating the ID Tool with special emphasis on the observable indicators of testing and debugging computational models. We collected 75 hours of students’ interactions with a computational modeling tool and analyzed them using the ID Tool to characterize students’ use of ST and CT when involved in modeling. The results suggest that the ID Tool has the potential to allow researchers and practitioners to identify student involvement in various aspects of ST and CT as they construct and revise computational models.more » « less
-
National Science Teachers Association (Ed.)We demonstrate how a chemistry unit on evaporative cooling with an embedded system modeling tool called SageModeler can help students in the critical work of exploring and understanding complex problems. The framework for scaffolding students in ST and CT through modeling can be applied to other disciplines—including climate change, ecosystems, population dynamics, forces and motion, and many other topics—in order to foster student participation in systems thinking and computational thinking through modeling. In doing so, they will build skills to help them solve complex problems of the future.more » « less
-
null (Ed.)This paper introduces project-based learning (PBL) features for developing technological, curricular, and pedagogical supports to engage students in computational thinking (CT) through modeling. CT is recognized as the collection of approaches that involve people in computational problem solving. CT supports students in deconstructing and reformulating a phenomenon such that it can be resolved using an information-processing agent (human or machine) to reach a scientifically appropriate explanation of a phenomenon. PBL allows students to learn by doing, to apply ideas, figure out how phenomena occur and solve challenging, compelling and complex problems. In doing so, students take part in authentic science practices similar to those of professionals in science or engineering, such as computational thinking. This paper includes 1) CT and its associated aspects, 2) The foundation of PBL, 3) PBL design features to support CT through modeling, and 4) a curriculum example and associated student models to illustrate how particular design features can be used for developing high school physical science materials, such as an evaporative cooling unit to promote the teaching and learning of CT.more » « less
-
Abstract This paper introduces project-based learning (PBL) features for developing technological, curricular, and pedagogical supports to engage students in computational thinking (CT) through modeling. CT is recognized as the collection of approaches that involve people in computational problem solving. CT supports students in deconstructing and reformulating a phenomenon such that it can be resolved using an information-processing agent (human or machine) to reach a scientifically appropriate explanation of a phenomenon. PBL allows students to learn by doing, to apply ideas, figure out how phenomena occur and solve challenging, compelling and complex problems. In doing so, students take part in authentic science practices similar to those of professionals in science or engineering, such as computational thinking. This paper includes 1) CT and its associated aspects, 2) The foundation of PBL, 3) PBL design features to support CT through modeling, and 4) a curriculum example and associated student models to illustrate how particular design features can be used for developing high school physical science materials, such as an evaporative cooling unit to promote the teaching and learning of CT.
-
Gresalfi, M. ; Horn, I. S. (Ed.)As human society advances, new scientific challenges are constantly emerging. The use of systems thinking (ST) and computational thinking (CT) can help elucidate these problems and bring us closer to a possible solution. The construction and use of models is one of the most widely used tools when trying to understand systems. In this paper, we examine four case studies of student pairs who were engaged in building and using system models in an NGSS-aligned project-based learning unit on chemical kinetics. Using a theoretical framework that describes how CT and ST practices are manifested in the modeling process we examine the progression of students’ models during their model revisions and explore strategies they employ to overcome modeling challenges they face. We discuss some suggestions to scaffold students’ progression in constructing computational system models and prepare teachers to support their students in engaging in CT and ST practices.more » « less