skip to main content


Title: Consequences of equivalency metric design for energy transitions and climate change
Abstract

Assessments of the climate impacts of energy technologies and other emissions sources can depend strongly on the equivalency metric used to compare short- and long-lived greenhouse gas emissions. However, the consequences of metric design choices are not fully understood, and in practice, a single metric, the global warming potential (GWP), is used almost universally. Many metrics have been proposed and evaluated in recent decades, but questions still remain about which ones perform better and why. Here, we develop new insights on how the design of equivalency metrics can impact the outcomes of climate policies. We distill the equivalency metric problem into a few key design choices that determine the metric values and shapes seen across a wide range of different proposed metrics. We examine outcomes under a hypothetical 1.5 or 2C policy target and discuss extensions to other policies. Across policy contexts, the choice of time parameters is particularly important. Metrics that emphasize the immediate impacts of short-lived gases such as methane can reduce rates of climate change but may require more rapid technology changes. Differences in outcomes across metrics are more pronounced when fossil fuels, with or without carbon capture and storage, play a larger role in energy transitions. By identifying a small set of consequential design decisions, these insights can help make metric choices and energy transitions more deliberate and effective at mitigating climate change.

 
more » « less
NSF-PAR ID:
10379749
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Climatic Change
Volume:
175
Issue:
1-2
ISSN:
0165-0009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate change mitigation measures are often projected to reduce anthropogenic carbon dioxide concentrations. Yet, it seems there is ample evidence suggesting that we have a limited understanding of the impacts of these measures and their combinations. For example, the Inflation Reduction Act (IRA) enacted in the U.S. in 2022 contains significant provisions, such as the electric vehicle (EV) tax credits, to reduce CO2 emissions. However, the impact of such provisions is not fully understood across the U.S., particularly in the context of their interactions with other macroeconomic systems. In this paper, we employ an Integrated Assessment Model (IAM), the Global Change Assessment Model (GCAM), to estimate the future CO2 emissions in the U.S. GCAM is equipped to comprehensively characterize the interactions among different systems, e.g., energy, water, land use, and transportation. Thus, the use of GCAM-USA that has U.S. state-level resolution allows the projection of the impacts and consequences of major provisions in the IRA, i.e., EV tax credits and clean energy incentives. To compare the performance of these incentives and credits, a policy effectiveness index is used to evaluate the strength of the relationship between the achieved total CO2 emissions and the overarching emission reduction costs. Our results show that the EV tax credits as stipulated in the IRA can only marginally reduce carbon emissions across the U.S. In fact, it may lead to negative impacts in some states. However, simultaneously combining the incentives and tax credits improves performance and outcomes better than the sum of the individual effects of the policies. This demonstrates that the whole is greater than the sum of the parts in this decarbonization approach. Our findings provide insights for policymakers with a recommendation that combining EV tax credits with clean energy incentives magnifies the intended impact of emission reduction. 
    more » « less
  2. Abstract

    Despite broad consensus on the benefits of a nexus approach to multi-sector planning, actual implementation in government and other decision-making institutions is still rare. This study presents an approach to conducting integrated energy-water-land (EWL) planning, using Uruguay as an example. This stakeholder-driven study focuses on assessing the EWL nexus implications of actual planned policies aimed at strengthening three of Uruguay’s key exports (beef, soy, and rice), which account for more than 40% of total national export revenue. Five scenarios are analyzed in the study: a reference scenario, a climate impacts scenario, and three policy scenarios. The three policy scenarios include measures such as increasing the intensity of beef production while simultaneously decreasing emissions, increasing irrigated soybean production, and improving rice yields. This study supplements previous sector-specific planning efforts in Uruguay by conducting the first stakeholder-driven integrated multi-sector assessment of planned policies in Uruguay using a suite of integrated modeling tools. Key insights from the study are: as compared to a reference scenario, improving beef productivity could lead to cropland expansion (+30%) and significant indirect increases in water requirements (+20%); improving rice yields could lead to increases in total emissions (+3%), which may partially offset emissions reductions from other policies; expanding irrigated soy could have the least EWL impacts amongst the policies studied; and climate-driven changes could have significantly less impact on EWL systems as compared to human actions. The generalizable insights derived from this analysis are readily applicable to other countries facing similar multi-sector planning challenges. In particular, the study’s results reinforce the fact that policies often have multi-sector consequences, and thus policies can impact one another’s efficacy. Thus, policy design and implementation can benefit from coordination across sectors and decision-making institutions.

     
    more » « less
  3. Unmitigated climate change will likely produce major problems for human populations worldwide. Although many researchers and policy-makers believe that drought may be an important “push” factor underlying migration in the future, the precise relationship between drought and migration remains unclear. This article models the potential scope of such movements for the emissions policy choices facing all nation-states today. Applying insights from climate science and computational modeling to migration research, we examine the likely surge of drought-induced migration and assess the prospects of different policy scenarios to mitigate involuntary displacement. Using an ensemble of 16 climate models in conjunction with high-resolution geospatial population data and different policy scenarios, we generate drought projections worldwide and estimate the potential for internal and international population movement due to extreme droughts through the remainder of the 21stcentury. Our simulations suggest that a potential for drought-induced migration increases by approximately 200 percent under the current international policy scenario (corresponding to the current Paris Agreement targets). In contrast, total migration increases by almost 500 percent, should current international cooperation fail and should unrestricted policies toward greenhouse gas emissions prevail. We argue that despite the continued growth projections of drought-induced migration in all cases, international cooperation on climate change can substantially reduce the global potential for such migration, in contrast to unilateral policy approaches to energy demands. This article highlights the importance of modeling future environmental migrations, in order to manage the pressures and unprecedented policy challenges which are expected to dramatically increase under conditions of unmitigated climate change.

     
    more » « less
  4. Abstract

    While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.

     
    more » « less
  5. null (Ed.)
    Forests increasingly will be used for carbon dioxide removal (CDR) as a natural climate solution, and the implementation of forest-based CDR presents a complex public policy challenge. In this paper, our goal is to review a range of policy tools in place to support use of forests for CDR and demonstrate how concepts from the policy design literature can inform our understanding of this domain. We explore how the utilization of different policy tools shapes our ability to use forests to mitigate and adapt to climate change and consider the challenges of policy mixes and integration, taking a close look at three areas of international forest policy, including the Kyoto Protocol's Clean Development Mechanism, Reducing Emissions from Deforestation and Forest Degradation (REDD+) and voluntary carbon offset markets. As it is our expertise, we then examine in detail the case of the USA as a country that lacks aggressive implementation of national climate policies but has potential to increase CDR through reforestation and existing forest management on both public and private land. For forest-based CDR to succeed, a wide array of policy tools will have to be implemented in a variety of contexts with an eye towards overcoming the challenges of policy design with regard to uncertainty in policy outcomes, policy coherence around managing forests for carbon simultaneously with other goals and integration across governance contexts and levels. 
    more » « less