skip to main content

Title: Realistic H  i  scale heights of Milky Way-mass galaxies in the FIREbox cosmological volume

Accurately reproducing the thin cold gas discs observed in nearby spiral galaxies has been a long standing issue in cosmological simulations. Here, we present measurements of the radially resolved H i scale height in 22 non-interacting Milky Way-mass galaxies from the FIREbox cosmological volume. We measure the H i scale heights using five different approaches commonly used in the literature: fitting the vertical volume density distribution with a Gaussian, the distance between maximum and half-maximum of the vertical volume density distribution, a semi-empirical description using the velocity dispersion and the galactic gravitational potential, the analytic assumption of hydrostatic equilibrium, and the distance from the midplane which encloses ≳60 per cent of the H i mass. We find median H i scale heights, measured using the vertical volume distribution, that range from ∼100 pc in the galactic centres to ∼800 pc in the outskirts and are in excellent agreement with recent observational results. We speculate that the presence of a realistic multiphase interstellar medium, including cold gas, and realistic stellar feedback are the drivers behind the realistic H i scale heights.

more » « less
Award ID(s):
2108230 1715216 2045928
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Medium: X Size: p. L63-L68
["p. L63-L68"]
Sponsoring Org:
National Science Foundation
More Like this

    The cold neutral medium (CNM) is an important part of the galactic gas cycle and a precondition for the formation of molecular and star-forming gas, yet its distribution is still not fully understood. In this work, we present extremely high resolution simulations of spiral galaxies with time-dependent chemistry such that we can track the formation of the CNM, its distribution within the galaxy, and its correlation with star formation. We find no strong radial dependence between the CNM fraction and total neutral atomic hydrogen (H i) due to the decreasing interstellar radiation field counterbalancing the decreasing gas column density at larger galactic radii. However, the CNM fraction does increase in spiral arms where the CNM distribution is clumpy, rather than continuous, overlapping more closely with H2. The CNM does not extend out radially as far as H i, and the vertical scale height is smaller in the outer galaxy compared to H i with no flaring. The CNM column density scales with total mid-plane pressure and disappears from the gas phase below values of PT/kB = 1000 K cm−3. We find that the star formation rate density follows a similar scaling law with CNM column density to the total gas Kennicutt–Schmidt law. In the outer galaxy, we produce realistic vertical velocity dispersions in the H i purely from galactic dynamics, but our models do not predict CNM at the extremely large radii observed in H i absorption studies of the Milky Way. We suggest that extended spiral arms might produce isolated clumps of CNM at these radii.

    more » « less

    We present the ${\rm H}\, {\small I}$ distribution of galaxies from the Continuum Haloes in Nearby Galaxies – an EVLA Survey (CHANG-ES). Though the observational mode was not optimized for detecting ${\rm H}\, {\small I}$, we successfully produce ${\rm H}\, {\small I}$ cubes for 19 galaxies. The moment-0 maps from this work are available on CHANG-ES data release website (i.e. Our sample is dominated by star-forming, ${\rm H}\, {\small I}$-rich galaxies at distances from 6.27 to 34.1 Mpc. ${\rm H}\, {\small I}$ interferometric images on two of these galaxies (NGC 5792 and UGC 10288) are presented here for the first time, while 12 of our remaining sample galaxies now have better ${\rm H}\, {\small I}$ spatial resolutions and/or sensitivities of intensity maps than those in existing publications. We characterize the average scale heights of the ${\rm H}\, {\small I}$ distributions for a subset of most inclined galaxies (inclination > 80 deg), and compare them to the radio continuum intensity scale heights, which have been derived in a similar way. The two types of scale heights are well correlated, with similar dependence on disc radial extension and star formation rate surface density but different dependence on mass surface density. This result indicates that the vertical distribution of the two components may be governed by similar fundamental physics but with subtle differences.

    more » « less
  3. null (Ed.)
    ABSTRACT Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (ΣSFR). These results support the notion that the Kennicutt–Schmidt relation arises because ΣSFR and the gas surface density (Σg) are connected via the ISM mid-plane pressure. 
    more » « less

    We explore the properties of central galaxies living in voids using the eagle cosmological hydrodynamic simulations. Based on the minimum void-centric distance, we define four galaxy samples: inner void, outer void, wall, and skeleton. We find that inner void galaxies with host halo masses $\lt 10^{12}\,\rm M_{\odot }$ have lower stellar mass and stellar mass fractions than those in denser environments, and the fraction of galaxies with star formation (SF) activity and atomic hydrogen (H i) gas decreases with increasing void-centric distance, in agreement with observations. To mitigate the influence of stellar (halo) mass, we compare inner void galaxies to subsamples of fixed stellar (halo) mass. Compared to denser environments, inner void galaxies with $M_{*}= 10^{[9.0-9.5]}\,\rm M_{\odot }$ have comparable SF activity and H i gas fractions, but the lowest quenched galaxy fraction. Inner void galaxies with $M_{*}= 10^{[9.5-10.5]}\,\rm M_{\odot }$ have the lowest H i gas fraction, the highest quenched fraction and the lowest gas metallicities. On the other hand, inner void galaxies with $M_{*}\gt 10^{10.5}\,\rm M_{\odot }$ have comparable SF activity and H i gas fractions to their analogues in denser environments. They retain the highest metallicity gas that might be linked to physical processes that act with lower efficiency in underdense regions such as AGN (active galaxy nucleus) feedback. Furthermore, inner void galaxies have the lowest fraction of positive gas-phase metallicity gradients, which are typically associated with external processes or feedback events, suggesting they have more quiet merger histories than galaxies in denser environments. Our findings shed light on how galaxies are influenced by their large-scale environment.

    more » « less

    We use analytical calculations and time-dependent spherically symmetric simulations to study the properties of isothermal galactic winds driven by cosmic rays (CRs) streaming at the Alfvén velocity. The simulations produce time-dependent flows permeated by strong shocks; we identify a new linear instability of sound waves that sources these shocks. The shocks substantially modify the wind dynamics, invalidating previous steady state models: the CR pressure pc has a staircase-like structure with dpc/dr ≃ 0 in most of the volume, and the time-averaged CR energetics are in many cases better approximated by pc ∝ ρ1/2, rather than the canonical pc ∝ ρ2/3. Accounting for this change in CR energetics, we analytically derive new expressions for the mass-loss rate, momentum flux, wind speed, and wind kinetic power in galactic winds driven by CR streaming. We show that streaming CRs are ineffective at directly driving cold gas out of galaxies, though CR-driven winds in hotter ISM phases may entrain cool gas. For the same physical conditions, diffusive CR transport (Paper I) yields mass-loss rates that are a few-100 times larger than streaming transport, and asymptotic wind powers that are a factor of ≃4 larger. We discuss the implications of our results for galactic wind theory and observations; strong shocks driven by CR-streaming-induced instabilities produce gas with a wide range of densities and temperatures, consistent with the multiphase nature of observed winds. We also quantify the applicability of the isothermal gas approximation for modelling streaming CRs and highlight the need for calculations with more realistic thermodynamics.

    more » « less