We use the simba cosmological galaxy formation simulation to investigate the relationship between major mergers ($\lesssim$4:1), starbursts, and galaxy quenching. Mergers are identified via sudden jumps in stellar mass M* well above that expected from in situ star formation, while quenching is defined as going from specific star formation rate (sSFR) $\gt t_{\rm H}^{-1}$ to $\lt 0.2t_{\rm H}^{-1}$, where tH is the Hubble time. At z ≈ 0–3, mergers show ∼2–3× higher SFR than a mass-matched sample of star-forming galaxies, but globally represent $\lesssim 1{{\ \rm per\ cent}}$ of the cosmic SF budget. At low masses, the increase in SFR in mergers is mostly attributed to an increase in the H2 content, but for $M_*\gtrsim 10^{10.5} \,\mathrm{ M}_{\odot }$ mergers also show an elevated star formation efficiency suggesting denser gas within merging galaxies. The merger rate for star-forming galaxies shows a rapid increase with redshift, ∝(1 + z)3.5, but the quenching rate evolves much more slowly, ∝(1 + z)0.9; there are insufficient mergers to explain the quenching rate at $z\lesssim 1.5$. simba first quenches galaxies at $z\gtrsim 3$, with a number density in good agreement with observations. The quenching time-scales τq are strongly bimodal, with ‘slow’ quenchings (τq ∼ 0.1tH) dominating overall, but ‘fast’ quenchings (τq ∼ 0.01tH) dominating in M* ∼ 1010–1010.5 M$\odot$ galaxies, likely induced by simba’s jet-mode black hole feedback. The delay time distribution between mergers and quenching events suggests no physical connection to either fast or slow quenching. Hence, simba predicts that major mergers induce starbursts, but are unrelated to quenching in either fast or slow mode.
- NSF-PAR ID:
- 10390149
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 497
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 146 to 166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT The James Webb Space Telescope will have the power to characterize high-redshift quasars at z ≥ 6 with an unprecedented depth and spatial resolution. While the brightest quasars at such redshift (i.e. with bolometric luminosity $L_{\rm bol}\geqslant 10^{46}\, \rm erg/s$) provide us with key information on the most extreme objects in the Universe, measuring the black hole (BH) mass and Eddington ratios of fainter quasars with $L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$ opens a path to understand the build-up of more normal BHs at z ≥ 6. In this paper, we show that the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA large-scale cosmological simulations do not agree on whether BHs at z ≥ 4 are overmassive or undermassive at fixed galaxy stellar mass with respect to the MBH − M⋆ scaling relation at z = 0 (BH mass offsets). Our conclusions are unchanged when using the local scaling relation produced by each simulation or empirical relations. We find that the BH mass offsets of the simulated faint quasar population at z ≥ 4, unlike those of bright quasars, represent the BH mass offsets of the entire BH population, for all the simulations. Thus, a population of faint quasars with $L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$ observed by JWST can provide key constraints on the assembly of BHs at high redshift. Moreover, this will help constraining the high-redshift regime of cosmological simulations, including BH seeding, early growth, and co-evolution with the host galaxies. Our results also motivate the need for simulations of larger cosmological volumes down to z ∼ 6, with the same diversity of subgrid physics, in order to gain statistics on the most extreme objects at high redshift.
-
ABSTRACT We study specific star formation rate (sSFR) and gas profiles of star-forming (SF) and green valley (GV) galaxies in the simba cosmological hydrodynamic simulation. SF galaxy half-light radii (Rhalf) at z = 0 and their evolution (∝(1 + z)−0.78) agree with observations. Passive galaxy Rhalf agree with observations at high redshift, but by z = 0 are too large, owing to numerical heating. We compare simbaz = 0 sSFR radial profiles for SF and GV galaxies to observations. simba shows strong central depressions in star formation rate (SFR), sSFR, and gas fraction in GV galaxies and massive SF systems, qualitatively as observed, owing to black hole X-ray feedback, which pushes central gas outwards. Turning off X-ray feedback leads to centrally peaked sSFR profiles as in other simulations. In conflict with observations, simba yields GV galaxies with strongly dropping sSFR profiles beyond ≳Rhalf, regardless of active galactic nucleus feedback. The central depression owes to lowering molecular gas content; the drop in the outskirts owes to reduced star formation efficiency. simba’s satellites have higher central sSFR and lower outskirts sSFR than centrals, in qualitative agreement with observations. At z = 2, simba does not show central depressions in massive SF galaxies, suggesting simba’s X-ray feedback should be more active at high-z. High-resolution tests indicate central sSFR suppression is not sensitive to numerical resolution. Reproducing the central sSFR depression in z = 0 GV galaxies represents a unique success of simba. The remaining discrepancies highlight the importance of SFR and gas profiles in constraining quenching mechanisms.more » « less
-
Abstract We present 0.″22-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2−1) emission from the circumnuclear gas disk in the red nugget relic galaxy PGC 11179. The disk shows regular rotation, with projected velocities near the center of 400 km s−1. We assume the CO emission originates from a dynamically cold, thin disk and fit gas-dynamical models directly to the ALMA data. In addition, we explore systematic uncertainties by testing the impacts of various model assumptions on our results. The supermassive black hole (BH) mass (
M BH) is measured to beM BH= (1.91 ± 0.04 [1σ statistical] [systematic]) × 109M ⊙, and theH -band stellar mass-to-light ratioM /L H = 1.620 ± 0.004 [1σ statistical] [systematic]M ⊙/L ⊙. ThisM BHis consistent with the BH mass−stellar velocity dispersion relation but over-massive compared to the BH mass−bulge luminosity relation by a factor of 3.7. PGC 11179 is part of a sample of local compact early-type galaxies that are plausible relics ofz ∼ 2 red nuggets, and its behavior relative to the scaling relations echoes that of three relic galaxy BHs previously measured with stellar dynamics. These over-massive BHs could suggest that BHs gain most of their mass before their host galaxies do. However, our results could also be explained by greater intrinsic scatter at the high-mass end of the scaling relations, or by systematic differences in gas- and stellar-dynamical methods. AdditionalM BHmeasurements in the sample, including independent cross-checks between molecular gas- and stellar-dynamical methods, will advance our understanding of the co-evolution of BHs and their host galaxies. -
ABSTRACT Recent observations have shown that the environmental quenching of galaxies at z ∼ 1 is qualitatively different to that in the local Universe. However, the physical origin of these differences has not yet been elucidated. In addition, while low-redshift comparisons between observed environmental trends and the predictions of cosmological hydrodynamical simulations are now routine, there have been relatively few comparisons at higher redshifts to date. Here we confront three state-of-the-art suites of simulations (BAHAMAS+MACSIS, EAGLE+Hydrangea, IllustrisTNG) with state-of-the-art observations of the field and cluster environments from the COSMOS/UltraVISTA and GOGREEN surveys, respectively, at z ∼ 1 to assess the realism of the simulations and gain insight into the evolution of environmental quenching. We show that while the simulations generally reproduce the stellar content and the stellar mass functions of quiescent and star-forming galaxies in the field, all the simulations struggle to capture the observed quenching of satellites in the cluster environment, in that they are overly efficient at quenching low-mass satellites. Furthermore, two of the suites do not sufficiently quench the highest mass galaxies in clusters, perhaps a result of insufficient feedback from AGN. The origin of the discrepancy at low stellar masses ($M_* \lesssim 10^{10}$ M⊙), which is present in all the simulations in spite of large differences in resolution, feedback implementations, and hydrodynamical solvers, is unclear. The next generation of simulations, which will push to significantly higher resolution and also include explicit modelling of the cold interstellar medium, may help us to shed light on the low-mass tension.