skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Double ridge formation over shallow water sills on Jupiter’s moon Europa
Abstract Jupiter’s moon Europa is a prime candidate for extraterrestrial habitability in our solar system. The surface landforms of its ice shell express the subsurface structure, dynamics, and exchange governing this potential. Double ridges are the most common surface feature on Europa and occur across every sector of the moon, but their formation is poorly understood, with current hypotheses providing competing and incomplete mechanisms for the development of their distinct morphology. Here we present the discovery and analysis of a double ridge in Northwest Greenland with the same gravity-scaled geometry as those found on Europa. Using surface elevation and radar sounding data, we show that this double ridge was formed by successive refreezing, pressurization, and fracture of a shallow water sill within the ice sheet. If the same process is responsible for Europa’s double ridges, our results suggest that shallow liquid water is spatially and temporally ubiquitous across Europa’s ice shell.  more » « less
Award ID(s):
1745137
PAR ID:
10379947
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The presence of supercooled water in polar regions causes anchor ice to grow on submerged objects, generating costly problems for engineered materials and life-endangering risks for benthic communities. The factors driving underwater ice accretion are poorly understood, and passive prevention mechanisms remain unknown. Here we report that the Antarctic scallop Adamussium colbecki appears to remain ice-free in shallow Antarctic marine environments where underwater ice growth is prevalent. In contrast, scallops colonized by bush sponges in the same microhabitat grow ice and are removed from the population. Characterization of the Antarctic scallop shells revealed a hierarchical micro-ridge structure with sub-micron nano-ridges which promotes directed icing. This concentrates the formation of ice on the growth rings while leaving the regions in between free of ice, and appears to reduce ice-to-shell adhesion when compared to temperate species that do not possess highly ordered surface structures. The ability to control the formation of ice may enable passive underwater anti-icing protection, with the removal of ice possibly facilitated by ocean currents or scallop movements. We term this behavior cryofouling avoidance. We posit that the evolution of natural anti-icing structures is a key trait for the survival of Antarctic scallops in anchor ice zones. 
    more » « less
  2. Abstract Bedrock weathering regulates nutrient mobilization, water storage, and soil production. Relative to the mobile soil layer, little is known about the relationship between topography and bedrock weathering. Here, we identify a common pattern of weathering and water storage across a sequence of three ridges and valleys in the sedimentary Great Valley Sequence in Northern California that share a tectonic and climate history. Deep drilling, downhole logging, and characterization of chemistry and porosity reveal two weathering fronts. The shallower front is ∼7 m deep at the ridge of all three hillslopes, and marks the extent of pervasive fracturing and oxidation of pyrite and organic carbon. A deeper weathering front marks the extent of open fractures and discoloration. This front is 11 m deep under two ridges of similar ridge‐valley spacing, but 17.5 m deep under a ridge with nearly twice the ridge‐valley spacing. Hence, at ridge tops, the fraction of the hillslope relief that is weathered scales with hillslope length. In all three hillslopes, below this second weathering front, closed fractures and unweathered bedrock extend about one‐half the hilltop elevation above the adjacent channels. Neutron probe surveys reveal that seasonally dynamic moisture is stored to approximately the same depth as the shallow weathering front. Under the channels that bound our study hillslopes, the two weathering fronts coincide and occur within centimeters of the ground surface. Our findings provide evidence for feedbacks between erosion and weathering in mountainous landscapes that result in systematic subsurface structuring and water routing. 
    more » « less
  3. null (Ed.)
    Bedrock weathering regulates nutrient mobilization, water storage, and soil production. Relative to the mobile soil layer, little is known about the relationship between topography and bedrock weathering. Here, we identify a common pattern of weathering and water storage across a sequence of three ridges and valleys in the sedimentary Great Valley Sequence in Northern California that share a tectonic and climate history. Deep drilling, downhole logging, and characterization of chemistry and porosity reveal two weathering fronts. The shallower front is ∼7 m deep at the ridge of all three hillslopes, and marks the extent of pervasive fracturing and oxidation of pyrite and organic carbon. A deeper weathering front marks the extent of open fractures and discoloration. This front is 11 m deep under two ridges of similar ridge-valley spacing, but 17.5 m deep under a ridge with nearly twice the ridge-valley spacing. Hence, at ridge tops, the fraction of the hillslope relief that is weathered scales with hillslope length. In all three hillslopes, below this second weathering front, closed fractures and unweathered bedrock extend about one-half the hilltop elevation above the adjacent channels. Neutron probe surveys reveal that seasonally dynamic moisture is stored to approximately the same depth as the shallow weathering front. Under the channels that bound our study hillslopes, the two weathering fronts coincide and occur within centimeters of the ground surface. Our findings provide evidence for feedbacks between erosion and weathering in mountainous landscapes that result in systematic subsurface structuring and water routing. 
    more » « less
  4. Abstract Atmospheric pressure plasma jets (APPJs) are increasingly being used to functionalize polymers and dielectric materials for biomedical and biotechnology applications. Once such application is microfluidic labs-on-a-chip consisting of dielectric slabs with microchannel grooves hundreds of microns in width and depth. The periodic channels, an example of a complex surface, present challenges in terms of directly and uniformly exposing the surface to the plasma. In this paper, we discuss results from computational and experimental investigations of negative APPJs sustained in Ar/N2mixtures flowing into ambient air and incident onto a series of microchannels. Results from two-dimensional plasma hydrodynamics modeling are compared to experimental measurements of electric field and fast-camera imaging. The propagation of the plasma across dry microchannels largely consists of a sequence of surface ionization waves (SIWs) on the top ridges of the channels and bulk ionization waves (IWs) crossing over the channels. The IWs are directed into electric field enhanced vertices of the next ridge. The charging of these ridges produce reverse IWs responsible for the majority of the ionization. The propagation of the plasma across water filled microchannels evolve into hopping SIWs between the leading edges of the water channels, regions of electric enhancement due to polarization of the water. Positive, reverse IWs follow the pre-ionized path of the initial negative waves. 
    more » « less
  5. Abstract Geological records of ice sheet collapse can provide perspective on the ongoing retreat of grounded and floating ice. An abrupt retreat of the West Antarctic Ice Sheet (WAIS) that occurred during the early deglaciation is well recorded on the eastern Ross Sea continental shelf. There, an ice shelf breakup at 12.3 ± 0.6 cal. (calibrated) kyr BP caused accelerated ice-mass loss from the Bindschadler Ice Stream (BIS). The accelerated mass loss led to a significant negative mass balance that re-organized WAIS flow across the central and eastern Ross Sea. By ~ 11.5 ± 0.3 cal kyr BP, dynamic thinning of grounded ice triggered a retreat that opened a ~ 200-km grounding-line embayment on the Whales Deep Basin (WDB) middle continental shelf. Here, we reconstruct the pattern, duration and rate of retreat from a backstepping succession of small-scale grounding-zone ridges that formed on the embayment’s eastern flank. We used two end-member paleo-sediment fluxes, i.e., accumulation rates, to convert the cumulative sediment volumes of the ridge field to elapsed time for measured distances of grounding-line retreat. The end-members fluxes correspond to deposition rates for buttressed and unbuttressed ice stream flow. Both scenarios require sustained rapid retreat that exceeded several centuries. Grounding-line retreat is estimated to have averaged between ~ 100 ± 32 and ~ 700 ± 79 ma−1. The evidence favors the latter scenario because iceberg furrows that cross cut the ridges in deep water require weakly buttressed flow as the embayment opened. In comparison with the modern grounding-zone dynamics, this paleo-perspective provides confidence in model projections that a large-scale sustained contraction of grounded ice is underway in several Pacific-Ocean sectors of the WAIS. 
    more » « less