skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Probabilistic Approach for Estimating the Environmental Impact of Novel Product Concepts
Global concerns about climate change and resource management have escalated the need for sustainable consumer products. In light of this, sustainable design methodologies that supplement the product design process are needed. Current research focuses on developing sustainable design curricula, adapting classical design methods to accommodate environmental sustainability, and sustainability tools that are applicable during the early design phase. However, concurrent work suggests that sustainability-marketed and innovative products still lack a reduction of environmental impact compared to conventional products. Life cycle assessment (LCA) has proven to be an exceptional tool used to assess the environmental impact of a realized product. However, LCA is a reactive tool that does not proactively reduce the environmental impact of novel product concepts. Here we develop a novel methodology, the PeeP method, using historical product LCA data with kernel density estimation to provide an estimated environmental impact range for a given product design. The PeeP method is tested using a series of case studies exploring four different products. Results suggest that probability density estimations developed through this method reflect the environmental impact of the product at both the product and component level. In the context of sustainable design research, the PeeP method is a viable methodology for assessing product design environmental impact prior to product realization. Our methodology can allow designers to identify high-impact components and reduce the cost of product redesign in practice.  more » « less
Award ID(s):
1826469
PAR ID:
10380050
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME International Design Engineering Technical Conferences and Computers in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing volume of electronic waste (e-waste) creates significant environmental and economic challenges which demands practical management strategies. Life Cycle Assessment (LCA) has been known as a principal tool for evaluating the environmental impact of e-waste recycling and disposal methods. However, its application is hampered by inconsistencies in methodology, data limitations, and variations in system boundaries. This study provides a review of current LCA tools used in e-waste analysis and identifies gaps and opportunities for improvement. It categorizes studies into three groups: studies that applied LCA to product and process optimization, impact evaluation, and policy development. Findings reveal that LCA has been helpful in assessing the sustainability of different recycling strategies. However, significant variations exist in methodological approaches and data accuracy. Challenges such as the lack of standardized LCA protocols, the limited availability of regionspecific impact data, and inconsistencies in assessment methodologies are still barriers to its widespread adoption. Finally, the study discusses emerging trends in LCA aimed at addressing current gaps, including the incorporation of machine learning and artificial intelligence for predictive modeling, dynamic impact assessment frameworks, and the role of real-time data collection via IoT-based sensors. 
    more » « less
  2. Life Cycle Analysis (LCA) has long been utilized for decision making about the sustainability of products. LCA provides information about the total emissions generated for a given functional unit of a product, which is utilized by industries or consumers for comparing two products with regards to environmental performance. However, many existing LCAs utilize data that is representative of an average system with regards to life cycle stage, thus providing an aggregate picture. It has been shown that regional variation may lead to large variation in the environmental impacts of a product, specifically dealing with energy consumption, related emissions and resource consumptions. Hence, improving the reliability of LCA results for decision making with regards to environmental performance needs regional models to be incorporated for building a life cycle inventory that is representative of the origin of products from a certain region. In this work, we present the integration of regionalized data from process systems models and other sources to build regional LCA models and quantify the spatial variations per unit of biodiesel produced in the state of Indiana for environmental impact. In order to include regional variation, we have incorporated information about plant capacity for producing biodiesel from North and Central Indiana. The LCA model built is a cradle-to-gate. Once the region-specific models are built, the data were utilized in SimaPro to integrate with upstream processes to perform a life cycle impact assessment (LCIA). We report the results per liter of biodiesel from northern and central Indiana facilities in this work. The impact categories studied were global warming potential (kg CO2 eq) and freshwater eutrophication (kg P eq). While there were a lot of variations at individual county level, both regions had a similar global warming potential impact and the northern region had relatively lower eutrophication impacts. 
    more » « less
  3. Life cycle impact assessment (LCA) provides a better understanding of the energy, water, and material input and evaluates any production system’s output impacts. LCA has been carried out on various crops and products across the world. Some countries, however, have none or only a few studies. Here, we present the results of a literature review, following the PRISMA protocol, of what has been done in LCA to help stakeholders in these regions to understand the environmental impact at different stages of a product. The published literature was examined using the Google Scholar database to synthesize LCA research on agricultural activities, and 74 studies were analyzed. The evaluated papers are extensively studied in order to comprehend the various impact categories involved in LCA. The study reveals that tomatoes and wheat were the major crops considered in LCA. The major environmental impacts, namely, human toxicity potential and terrestrial ecotoxicity potential, were the major focus. Furthermore, the most used impact methods were CML, ISO, and IPCC. It was also found that studies were most often conducted in the European sector since most models and databases are suited for European agri-food products. The literature review did not focus on a specific region or a crop. Consequently, many studies appeared while searching using the keywords. Notwithstanding such limitations, this review provides a valuable reference point for those practicing LCA. 
    more » « less
  4. Despite the efforts to increase the pace of sustainable design adaptation in industries, several systemic barriers currently hinder this shift. The design for sustainability methods have been utilized in product design and development phases in many industries. However, they do not have a holistic approach that can capture these systemic drivers and barriers while considering all three pillars of sustainability: environmental, social, and economic. This research proposes a systems thinking approach toward sustainable design that can collectively consider different aspects of the production system in an attempt to resolve the multi-dimensional challenges within the design for sustainability. A reusable water bottle is selected as the case study to illustrate the applications and limitations of this approach. In addition, this case study also helped to define the boundaries and stakeholders involved in the system and reduce the abstractions. The results from this analysis are demonstrated as a causal loop diagram that could be implemented in a system dynamics model to quantitively identify the systematic forces and leverage points driving sustainable design in product development. The comprehensive understanding provided by this analysis revealed many improvement possibilities, trade-offs, and feedback loops within the system that can assist in realizing sustainable product design proliferation and associated positive sustainability outcomes. 
    more » « less
  5. AbstractGreenhouse gas emission reduction is often cited as a reason for high energy density, next-generation battery development. As lithium-O2battery research has progressed, researchers have examined the potential of many novel materials in the drive to reduce parasitic reactions and increase capacity. While the field has made great strides towards producing more reliable batteries, there has been little verification that lithium-O2batteries will reduce net environmental impacts. This paper examines how material selection ultimately impacts lithium-O2battery environmental impacts. Given that researchers should not wait until lithium-O2batteries reach commercialization to assess their environmental impact, this paper describes how to incorporate LCA as an integral part of the battery design process. Furthermore, it provides impact factors of many relevant materials to increase the ease of LCA for the field. <bold>Graphic abstract</bold> 
    more » « less