skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classifying Component Function in Product Assemblies With Graph Neural Networks
Abstract Function is defined as the ensemble of tasks that enable the product to complete the designed purpose. Functional tools, such as functional modeling, offer decision guidance in the early phase of product design, where explicit design decisions are yet to be made. Function-based design data is often sparse and grounded in individual interpretation. As such, function-based design tools can benefit from automatic function classification to increase data fidelity and provide function representation models that enable function-based intelligent design agents. Function-based design data is commonly stored in manually generated design repositories. These design repositories are a collection of expert knowledge and interpretations of function in product design bounded by function-flow and component taxonomies. In this work, we represent a structured taxonomy-based design repository as assembly-flow graphs, then leverage a graph neural network (GNN) model to perform automatic function classification. We support automated function classification by learning from repository data to establish the ground truth of component function assignment. Experimental results show that our GNN model achieves a micro-average F1-score of 0.617 for tier 1 (broad), 0.624 for tier 2, and 0.415 for tier 3 (specific) functions. Given the imbalance of data features and the subjectivity in the definition of product function, the results are encouraging. Our efforts in this paper can be a starting point for more sophisticated applications in knowledge-based CAD systems and Design-for-X consideration in function-based design.  more » « less
Award ID(s):
1826469
PAR ID:
10380052
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
144
Issue:
2
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Expanding on previous work of automating functional modeling, we have developed a more informed automation approach by assigning a weighted confidence metric to the wide variety of data in a design repository. Our work focuses on automating what we call linear functional chains, which are a component-based section of a full functional model. We mine the Design Repository to find correlations between component and function and flow. The automation algorithm we developed organizes these connections by component-function-flow frequency (CFF frequency), thus allowing the creation of linear functional chains. In previous work, we found that CFF frequency is the best metric in formulating the linear functional chain for an individual component; however, we found that this metric did not account for prevalence and consistency in the Design Repository data. To better understand our data, we developed a new metric, which we refer to as weighted confidence, to provide insight on the fidelity of the data, calculated by taking the harmonic mean of two metrics we extracted from our data, prevalence, and consistency. This method could be applied to any dataset with a wide range of individual occurrences. The contribution of this research is not to replace CFF frequency as a method of finding the most likely component-function-flow correlations but to improve the reliability of the automation results by providing additional information from the weighted confidence metric. Improving these automation results, allows us to further our ultimate objective of this research, which is to enable designers to automatically generate functional models for a product given constituent components. 
    more » « less
  2. Abstract The objective of this research is to support DfX considerations in the early phases of design. In order to do conduct DfX, designers need access to pertinent downstream knowledge that is keyed to early stage design activities and problem knowledge. Product functionality is one such “key” connection between early understanding of the design problem and component choices which dictate product performance and impact, and repositories of design knowledge are one way to archive such design knowledge. However, curation of design knowledge is often a time-consuming activity requiring expertise in product modeling. In this paper, we explore a method to automate the populating of design repositories to support the overall goal of having up-to-date repositories of product design knowledge. To do this, we mine information from an existing repository to better understand the relationships between the components, functions, and flows of products. The resulting knowledge can be applied to automate functional decompositions once a product's components have been entered and thus reliably provide that “key” between early design activities and the later, component dependent characteristics. 
    more » « less
  3. null (Ed.)
    Engineering designers currently use downstream information about product and component functions to facilitate ideation and concept generation of analogous products. These processes, often called Function-Based Design, can be reliant on designer definitions of product function, which are inconsistent from designer to designer. In this paper, we employ supervised learning algorithms to reduce the variety of component functions that are available to designers in a design repository, thus enabling designers to focus their function-based design efforts on more accurate, reduced sets of potential functions. To do this, we generate decisions trees and rules that define the functions of components based on the identity of neighboring components. The resultant decision trees and rulesets reduce the number of feasible functions for components within a product, which is of particular interest for use by novice designers, as reducing the feasible functional space can help focus the design activities of the designer. This reduction was evident in both case studies: one exploring a component that is known to the designer, and the other looking at defining function of an unrecognizable component. The work presented here contributes to the recent popularity of using product data in data-driven design methodologies, especially those focused on supplementing designer cognition. Importantly, we found that this methodology is reliant on repository data quality, and the results indicate a need to continue the development of design repository data schemas with improved data consistency and fidelity. This research is a necessary precursor for the development of function-based design tools, including automated functional modeling. 
    more » « less
  4. null (Ed.)
    Populating the different types of data for a design repository is a difficult and time-consuming task. In this work, we report on techniques to automate the population of data related to product function. We explore a preliminary method to automate the generation of the functional chains of components from new products based on hierarchical data from an existing design repos- itory. We use datasets of various scale and specificity to find correlations between functions and flows for components of products in the Design Repos- itory. We use the results to predict the most likely functions and flows for a component, and then verify the accuracy of our algorithm by cross-validating a subsection of the data against the automation results. We apply existing grammar rules to order the functions and flows in a linear functional chain. Ultimately, these findings suggest methods for further automating the process of generating functional models. 
    more » « less
  5. This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Nonnegative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice. 
    more » « less