Abstract We propose a novel image‐driven fitting strategy for isotropic BRDFs. Whereas existing BRDF fitting methods minimize a cost function directly on the error between the fitted analytical BRDF and the measured isotropic BRDF samples, we also take into account the resulting material appearance in visualizations of the BRDF. This change of fitting paradigm improves the appearance reproduction fidelity, especially for analytical BRDF models that lack the expressiveness to reproduce the measured surface reflectance. We formulate BRDF fitting as a two‐stage process that first generates a series of candidate BRDF fits based only on the BRDF error with measured BRDF samples. Next, from these candidates, we select the BRDF fit that minimizes the visual error. We demonstrate qualitatively and quantitatively improved fits for the Cook‐Torrance and GGX microfacet BRDF models. Furthermore, we present an analysis of the BRDF fitting results, and show that the image‐driven isotropic BRDF fits generalize well to other light conditions, and that depending on the measured material, a different weighting of errors with respect to the measured BRDF is necessary.
more »
« less
Multistatic fiber-based system for measuring the Mueller matrix bidirectional reflectance distribution function
Bidirectionality effects can be a significant confounding factor when measuring hyperspectral reflectance data. The bidirectional reflectance distribution function (BRDF) can effectively characterize the reflectivity of surfaces to correct remote sensing measurements. However, measuring BRDFs can be time-consuming, especially when collecting Mueller matrix BRDF (mmBRDF) measurements of a surface via conventional goniometric techniques. In this paper, we present a system for collecting mmBRDF measurements using static optical fiber detectors that sample the hemisphere surrounding an object. The entrance to each fiber contains a polarization state analyzer configuration, allowing for the simultaneous acquisition of the Stokes vector intensity components at many altitudinal and azimuthal viewing positions. We describe the setup, calibration, and data processing used for this system and present its performance as applied to mmBRDF measurements of a ground glass diffuser.
more »
« less
- Award ID(s):
- 1809753
- PAR ID:
- 10380142
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 61
- Issue:
- 33
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 9832
- Size(s):
- Article No. 9832
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Surface albedo is a fundamental radiative parameter as it controls the Earth’s energy budget and directly affects the Earth’s climate. Satellite observations have long been used to capture the temporal and spatial variations of surface albedo because of their continuous global coverage. However, space-based albedo products are often affected by errors in the atmospheric correction, multi-angular bi-directional reflectance distribution function (BRDF) modelling, as well as spectral conversions. To validate space-based albedo products, an in situ tower albedometer is often used to provide continuous “ground truth” measurements of surface albedo over an extended area. Since space-based albedo and tower-measured albedo are produced at different spatial scales, they can be directly compared only for specific homogeneous land surfaces. However, most land surfaces are inherently heterogeneous with surface properties that vary over a wide range of spatial scales. In this work, tower-measured albedo products, including both directional hemispherical reflectance (DHR) and bi-hemispherical reflectance (BHR), are upscaled to coarse satellite spatial resolutions using a new method. This strategy uses high-resolution satellite derived surface albedos to fill the gaps between the albedometer’s field-of-view (FoV) and coarse satellite scales. The high-resolution surface albedo is generated from a combination of surface reflectance retrieved from high-resolution Earth Observation (HR-EO) data and moderate resolution imaging spectroradiometer (MODIS) BRDF climatology over a larger area. We implemented a recently developed atmospheric correction method, the Sensor Invariant Atmospheric Correction (SIAC), to retrieve surface reflectance from HR-EO (e.g., Sentinel-2 and Landsat-8) top-of-atmosphere (TOA) reflectance measurements. This SIAC processing provides an estimated uncertainty for the retrieved surface spectral reflectance at the HR-EO pixel level and shows excellent agreement with the standard Landsat 8 Surface Reflectance Code (LaSRC) in retrieving Landsat-8 surface reflectance. Atmospheric correction of Sentinel-2 data is vastly improved by SIAC when compared against the use of in situ AErosol RObotic NETwork (AERONET) data. Based on this, we can trace the uncertainty of tower-measured albedo during its propagation through high-resolution EO measurements up to coarse satellite scales. These upscaled albedo products can then be compared with space-based albedo products over heterogeneous land surfaces. In this study, both tower-measured albedo and upscaled albedo products are examined at Ground Based Observation for Validation (GbOV) stations (https://land.copernicus.eu/global/gbov/), and used to compare with satellite observations, including Copernicus Global Land Service (CGLS) based on ProbaV and VEGETATION 2 data, MODIS and multi-angle imaging spectroradiometer (MISR).more » « less
-
We propose a set of techniques to efficiently importance sample the derivatives of a wide range of Bidirectional Reflectance Distribution Function (BRDF) models. In differentiable rendering, BRDFs are replaced by their differential BRDF counterparts, which are real-valued and can have negative values. This leads to a new source of variance arising from their change in sign. Real-valued functions cannot be perfectly importance sampled by a positive-valued PDF, and the direct application of BRDF sampling leads to high variance. Previous attempts at antithetic sampling only addressed the derivative with the roughness parameter of isotropic microfacet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other analytic BRDFs. Our method first decomposes the real-valued differential BRDF into a sum of single-signed functions, eliminating variance from a change in sign. Next, we importance sample each of the resulting single-signed functions separately. The first decomposition, positivization, partitions the real-valued function based on its sign, and is effective at variance reduction when applicable. However, it requires analytic knowledge of the roots of the differential BRDF, and for it to be analytically integrable too. Our key insight is that the single-signed functions can have overlapping support, which significantly broadens the ways we can decompose a real-valued function. Our product and mixture decompositions exploit this property, and they allow us to support several BRDF derivatives that positivization could not handle. For a wide variety of BRDF derivatives, our method significantly reduces the variance (up to 58× in some cases) at equal computation cost and enables better recovery of spatially varying textures through gradient-descent-based inverse rendering.more » « less
-
Abstract The aquatic eddy covariance technique is increasingly used to determine oxygen (O2) fluxes over benthic ecosystems. The technique uses O2measuring systems that have a high temporal and numerical resolution. In this study, we performed a series of lab and field tests to assess a new optical submersible O2meter designed for aquatic eddy covariance measurements and equipped with an existing ultra‐high speed optical fiber sensor. The meter has a 16‐bit digital‐to‐analog‐signal conversion that produces a 0–5 V output at a rate up to 40 Hz. The device was paired with an acoustic Doppler velocimeter. The combined meter and fiber‐optic O2sensor's response time was significantly faster in O2‐undersaturated water compared to in O2‐supersaturated water (0.087 vs. 0.12 s), but still sufficiently fast for aquatic eddy covariance measurements. The O2optode signal was not sensitive to variations in water flow or light exposure. However, the response time was affected by the direction of the flow. When the sensor tip was exposed to a flow from the back rather than the front, the response time increased by 37%. The meter's internal signal processing time was determined to be ~ 0.05 s, a delay that can be corrected for during postprocessing. In order for the built‐in temperature correction to be accurate, the meter should always be submerged with the fiber‐optic sensor. In multiple 21–47 h field tests, the system recorded consistently high‐quality, low‐noise O2flux data. Overall, the new meter is a powerful option for collecting robust aquatic eddy covariance data.more » « less
-
Abstract Bidirectional reflectance distribution function (BRDF) effects are a persistent issue for the analysis of vegetation in airborne imaging spectroscopy data, especially when mosaicking results from adjacent flightlines. With the advent of large airborne imaging efforts from NASA and the U.S. National Ecological Observatory Network (NEON), there is increasing need for methods that are flexible and automatable across images with diverse land cover. Flexible bidirectional reflectance distribution function (FlexBRDF) is built upon the widely used kernel method, with additional features including stratified random sampling across flightline groups, dynamic land cover stratification by normalized difference vegetation index (NDVI), interpolation of correction coefficients across NDVI bins, and the use of a reference solar zenith angle. We demonstrate FlexBRDF using nine long (150–400 km) airborne visible/infrared imaging spectrometer (AVIRIS)‐Classic flightlines collected on 22 May 2013 over Southern California, where diverse land cover and a wide range of solar illumination yield significant BRDF effects. We further test the approach on additional AVIRIS‐Classic data from California, AVIRIS‐Next Generation data from the Arctic and India, and NEON imagery from Wisconsin. Comparison of overlapping areas of flightlines show that models built from multiple flightlines performed better than those built for single images (root mean square error improved up to 2.3% and mean absolute deviation 2.5%). Standardization to a common solar zenith angle among a flightline group improved performance, and interpolation across bins minimized between‐bin boundaries. While BRDF corrections for individual sites suffice for local studies, FlexBRDF is an open source option that is compatible with bulk processing of large airborne data sets covering diverse land cover needed for calibration/validation of forthcoming spaceborne imaging spectroscopy missions.more » « less
An official website of the United States government
