skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Digitization, Measurement, and Analysis of a 1905 Barnard Atlas Photographic Plate
Abstract In the second paper in this series, we improve on our previous demonstration of the ability of a commercially available graphic arts scanner and cost-effective analysis tools to produce scientifically useful scans of astronomical photographic plates. We describe a method using freely available tools to extract magnitude measurements from the star images on sky-survey plates, such as are stored in observatory archives around the world. We detail the use of this method on one plate in particular, Plate 8 in E. E. Barnard’s A Photographic Atlas of Selected Regions of the Milky Way , examine the effects of our scanning method on our magnitude measurements, discuss the difficulties encountered when measuring the magnitudes of stars in crowded fields, and present a case study of red supergiant stars appearing within the field. Our work results in a catalog of more than 66,000 measurements of stellar positions and magnitudes in the central 6.°8 × 6.°8 field of view.  more » « less
Award ID(s):
2101781
PAR ID:
10380203
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
134
Issue:
1039
ISSN:
0004-6280
Page Range / eLocation ID:
094503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Henrietta Swan Leavitt’s discovery of the relationship between the period and luminosity (hereafter the Leavitt Law) of 25 variable stars in the Small Magellanic Cloud, published in 1912, revolutionized cosmology. These variables, eventually identified as Cepheids, became the first known “standard candles” for measuring extragalactic distances and remain the gold standard for this task today. Leavitt measured light curves, periods, and minimum and maximum magnitudes from painstaking visual inspection of photographic plates. Her work paved the way for the first precise series of distance measurements that helped set the scale of the Universe, and later the discovery of its expansion by Edwin Hubble in 1929. Here, we re-analyze Leavitt’s first Period–Luminosity relation using observations of the same set of stars but with modern data and methods of Cepheid analysis. Using only data from Leavitt’s notebooks, we assess the quality of her light curves, measured periods, and the slope and scatter of her Period–Luminosity relations. We show that modern data and methods, for the same objects, reduce the scatter of the Period–Luminosity relation by a factor of two. We also find a bias brightward at the short period end, due to the nonlinearity of the plates and environmental crowding. Overall, Leavitt’s results are in excellent agreement with contemporary measurements, reinforcing the value of Cepheids in cosmology today, a testament to the enduring quality of her work. 
    more » « less
  2. An experimental study investigates parametrically the effects of porosity on the acoustic and aerodynamic fields about lifting- and non-lifting surfaces at two separate aeroacoustic facilities using microphone arrays and hot-wire anemometry. A single dimensionless porosity parameter characterizes the flow noise generated by a turbulent boundary layer and informs the design of the porous edge test specimens, including perforated flat plates and flat-plate extensions with a blunt or sharp trailing edge. The strong tonal peak due to vortex shedding from blunt trailing-edges diminishes in magnitude as the porosity parameter increases, and high-porosity plates eliminate this tone from the acoustic spectra. Single-microphone measurements indicate further that the porous plates examined can reduce low-frequency noise and increase high-frequency excess noise levels by up to 10 dB. DAMAS beamforming of the porous plates with sharpened edges reveal similar results on the acoustic spectra and identify that the principal effect of edge porosity on the acoustic source regions is a reduction in low-frequency noise and an increase in high-frequency noise across the entire plate. Noise generated by porous edges in the low-frequency range by the trailing- and leading-edge regions can be reduced by up to 20 dB, and porous edges increase high-frequency noise by up to 20 dB. Plates with the same dimensionless porosity perform similarly, where plates with circular holes perform slightly better (2 dB) than their counterparts with square holes at reducing low-frequency noise the most and increasing high-frequency noise the least in wind tunnel testing. Hot-wire anemometry of the flow field about blunt porous trailing edges reveals a downward shift of the bluntness-induced vortex-shedding peak in the spectra of turbulent velocity fluctuations, which are not seen in the acoustic spectra. In addition, flow field measurements for both the blunt-edged and sharp-edge plates indicate significant increases in turbulence intensity at the plate surface which are believed to be caused by the presence of holes and related to the increase in noise seen at high frequencies. The wing of a remote-controlled glider is modified with porous plates near the trailing edge to demonstrate reductions in surface pressure level fluctuations on a flying vehicle at the owl scale. Measurements of these fluctuations on the wing and fuselage indicate the capacity of porous plates to modestly reduce surface pressure levels in select frequency ranges and settings of aerial vehicles. 
    more » « less
  3. Abstract Interseismic deformation describes the gradual accumulation of crustal strain within the tectonic plate and along the plate boundaries before the sudden release as earthquakes. In this study, we use 5 years of high spatial and temporal geodetic measurements, including Global Navigation Satellite System and Interferometric Synthetic Aperture Radar to monitor 3‐dimension interseismic crustal deformation and horizontal strain rate in Taiwan. We find significant deformation (strain rate >8  10−6 yr−1) along the plate boundary between the Philippine Sea and the Eurasian Plates in east Taiwan. The high strain rate in the southern part of the Western Foothills is distributed along a few major fault systems, which reveals the geometry of the deformation front in west Taiwan. Our results help identify active faults in southwest and north Taiwan that were not identified before. These findings can be insightful in informing future seismic hazard models. 
    more » « less
  4. Point spread function engineering uses specially designed phase plates placed at the exit pupil of an imaging system to reduce defocusing sensitivity. A custom phase plate is typically required for each system to enable extended depth of field imaging, so methods enabling variable extended depth of field imaging are of particular interest. In this paper, we discuss the fabrication of previously designed fixed cubic phase plates and variable phase plate pairs with quartic surface profiles and present a novel application of a point source microscope for performance characterization. Experimental measurements of through-focus point spread functions are compared with predictions to demonstrate and characterize the extended depth of field for both fixed and variable freeform phase plates. 
    more » « less
  5. Shallow depth of field in imaging systems with high numerical apertures results in images with in- and out-of-focus regions. Therefore, methods to enhance the depth of field are of special interest. In point spread function engineering, a custom phase plate is designed for each system to reduce sensitivity to defocus and thereby extend depth of field. In this paper, we present a method that enables extended depth of field for a range of numerical apertures using a freeform variable logarithmic phase plate pair. We leverage a numerical design approach for the variable phase plate pair design, and explore phase plate optimization and performance by quantifying and comparing through-focus point spread function variation, and on- and off-axis performance for the designed phase plates. 
    more » « less