skip to main content


Title: Forest degradation drives widespread avian habitat and population declines
Abstract In many regions of the world, forest management has reduced old forest and simplified forest structure and composition. We hypothesized that such forest degradation has resulted in long-term habitat loss for forest-associated bird species of eastern Canada (130,017 km 2 ) which, in turn, has caused bird-population declines. Despite little change in overall forest cover, we found substantial reductions in old forest as a result of frequent clear-cutting and a broad-scale transformation to intensified forestry. Back-cast species distribution models revealed that breeding habitat loss occurred for 66% of the 54 most common species from 1985 to 2020 and was strongly associated with reduction in old age classes. Using a long-term, independent dataset, we found that habitat amount predicted population size for 94% of species, and habitat loss was associated with population declines for old-forest species. Forest degradation may therefore be a primary cause of biodiversity decline in managed forest landscapes.  more » « less
Award ID(s):
2025755
NSF-PAR ID:
10380237
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Ecology & Evolution
Volume:
6
Issue:
6
ISSN:
2397-334X
Page Range / eLocation ID:
709 to 719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Forest conversion and habitat loss are major threats to biological diversity. Forest regeneration can mitigate the negative effects of old‐growth forest loss on species diversity, but less is known about the extent to which forest loss reduces genetic diversity in remnant populations and whether secondary forests play a role in the maintenance of genetic diversity. We quantified genetic diversity in a tropical hummingbird‐pollinated understorey herb,Heliconia tortuosa, across a landscape mosaic of primary and secondary forest regrowth. Using microsatellite genotypes from >850 adult and juvenile plants within 33 forest patches and extensive bird surveys, we examined the effect of contemporary and historical landscape features including forest age (primary vs. secondary forest), stand isolation and pollinator assemblages on genetic diversity and levels of inbreeding inH. tortuosa. We found that inbreeding was up to three times higher in secondary forest, and this effect was amplified with reductions in primary forest in the surrounding landscape through reduced observed heterozygosity in isolated fragments. Inbreeding in forest patches was negatively correlated with the local frequency of specialist long‐distance foraging traplining hummingbirds. Traplining hummingbirds therefore appear to facilitate mating among unrelated plants—an inference we tested using empirically parameterized simulations. Higher levels of inbreeding inH. tortuosaare therefore associated with reduced functional diversity of hummingbirds in secondary forests and forest patches isolated from primary forests. Our findings suggest a cryptic consequence of primary forest loss and secondary forest regeneration through the disruption of mutualistic interactions resulting in the erosion of genetic diversity in a common understorey plant.

     
    more » « less
  2. Abstract

    Approximately 20% of the Brazilian Amazon has now been deforested, and the Amazon is currently experiencing the highest rates of deforestation in a decade, leading to large‐scale land‐use changes. Roads have consistently been implicated as drivers of ongoing Amazon deforestation and may act as corridors to facilitate species invasions. Long‐term data, however, are necessary to determine how ecological succession alters avian communities following deforestation and whether established roads lead to a constant influx of new species.

    We used data across nearly 40 years from a large‐scale deforestation experiment in the central Amazon to examine the avian colonization process in a spatial and temporal framework, considering the role that roads may play in facilitating colonization.

    Since 1979, 139 species that are not part of the original forest avifauna have been recorded, including more secondary forest species than expected based on the regional species pool. Among the 35 species considered to have colonized and become established, a disproportionate number were secondary forest birds (63%), almost all of which first appeared during the 1980s. These new residents comprise about 13% of the current community of permanent residents.

    Widespread generalists associated with secondary forest colonized quickly following deforestation, with few new species added after the first decade, despite a stable road connection. Few species associated with riverine forest or specialized habitats colonized, despite road connection to their preferred source habitat. Colonizing species remained restricted to anthropogenic habitats and did not infiltrate old‐growth forests nor displace forest birds.

    Deforestation and expansion of road networks intoterra firmerainforest will continue to create degraded anthropogenic habitat. Even so, the initial pulse of colonization by nonprimary forest bird species was not the beginning of a protracted series of invasions in this study, and the process appears to be reversible by forest succession.

     
    more » « less
  3. Climate change has been linked to distribution shifts and population declines of numerous animal and plant species, particularly in montane ecosystems. The majority of studies suggest both that low-elevation avian and small mammal species are shifting up in elevation and that high-elevation avian communities are either shifting further upslope or relocating completely with an increase in average local temperatures. However, recent research suggests numerous high elevation montane species are either not shifting or are shifting down in elevation despite the local increasing temperature trends, perhaps as a result of the increased precipitation at high elevations. In this study, we examine common vertebrate species distributions across the Hubbard Brook valley in the White Mountain National Forest, including resident and migratory songbirds and small mammals, in relation to historic spring temperature and precipitation. We found no directional change in distributions through time for any of the species. However, we show that the majority of low-elevation bird species in our study area respond to warm spring temperatures by shifting upslope. All bird species that shifted were long-distance migrants. Each low-elevation migrant species responded differently to warm spring temperatures, through upslope distribution expansion, downslope distribution contraction, or total distribution shift upslope. In contrast, we found a majority of high-elevation bird species and both high- and low-elevation mammal species did not shift in response to spring temperature or precipitation and may be subject to more complex climate trends. The heterogeneous response to climate change highlights the need for more comprehensive studies on the subject and careful consideration for appropriate species and habitat management plans in northeastern montane regions. 
    more » « less
  4. Abstract

    Madagascar's lemurs are threatened by forest loss, fragmentation, and degradation. Many species use flexible behaviors to survive in degraded habitat, but their ability to persist in very small areas may be limited. Insular lemurs, like those found on Nosy Be, an island off the northwestern coast of Madagascar, are at heightened risk of sudden population declines and extirpation. Nosy Be is home to two Critically Endangered species—the endemic Nosy Be sportive lemur (Lepilemur tymerlachsoni) and Claire's mouse lemur (Microcebus mamiratra)—as well as the Endangered black lemur (Eulemur macaco). Most of the remaining forest on Nosy Be is protected by the 862‐ha Lokobe National Park. To document how Nosy Be lemurs use their restricted habitat, we conducted vegetation and reconnaissance surveys on 53 transects in and around Lokobe. We collected data on tree size, canopy cover, understory visibility, and elevation for 248 lemur sightings. We used a spatially explicit, multi‐species occupancy model to investigate which forest‐structure variables are important to lemurs. Our results represent some of the first data on habitat use by insular lemurs. Black lemurs preferred significantly larger trees and areas with less dense understory. They also occurred significantly less outside of Lokobe National Park, even when accounting for sampling effort and geography. The distributions of the sportive and mouse lemurs were not related to the forest structure variables we documented, but they did negatively predict each other—perhaps because their habitat requirements differ. These results also underscore the importance of the national park to protecting the black lemur population on Nosy Be and raise questions about what factors do influence the distribution of Nosy Be's smaller lemurs. Close monitoring is needed to prevent these populations and the ecosystem services they provide from disappearing, as have other island lemurs.

     
    more » « less
  5. Maps showing the estimated territorial boundaries of all bird species occupying the 10-ha bird plot in the Hubbard Brook Experimental Forest, 1969-2021. These data were used in estimating the abundance of bird populations during this period (e.g., Holmes and Sturges 1975, Holmes et al. 1986, Holmes and Sherry 1988, 2001, Holmes 2011). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Papers associated with this dataset: Holmes, R. T., & Sturges, F. W. (1975). Bird Community Dynamics and Energetics in a Northern Hardwoods Ecosystem. Journal of Animal Ecology, 44(1), 175–200. https://doi.org/10.2307/3857 Sherry, T. W. (1979). Competitive interactions and adaptive strategies of American Redstarts and Least Flycatchers in a northern hardwoods forest. The Auk, 96(2), 265-283. Holmes, R. T., Bonney, R. E., & Pacala, S. W. (1979). Guild Structure of the Hubbard Brook Bird Community: A Multivariate Approach. Ecology, 60(3), 512–520. https://doi.org/10.2307/1936071 Holmes, R. T., Sherry, T. W., & Sturges, F. W. (1986). Bird Community Dynamics in a Temperate Deciduous Forest: Long-Term Trends at Hubbard Brook. Ecological Monographs, 56(3), 201–220. https://doi.org/10.2307/2937074 Holmes, R. T., & Robinson, S. K. (1988). Spatial patterns, foraging tactics, and diets of ground-foraging birds in a northern hardwoods forest. The Wilson Bulletin, 377-394. Holmes, R. T., & Sherry, T. W. (1988). Assessing population trends of New Hampshire forest birds: local vs. regional patterns. The Auk, 105(4), 756-768. 10.2307/4087390 Holmes, R. T., & Sherry, T. W. (2001). Thirty-year bird population trends in an unfragmented temperate deciduous forest: importance of habitat change. The Auk, 118(3), 589-609. https://doi.org/10.1093/auk/118.3.589 Holmes, R. T. (2011). Avian population and community processes in forest ecosystems: Long-term research in the Hubbard Brook Experimental Forest. Forest Ecology and Management, 262(1), 20-32. https://doi.org/10.1016/j.foreco.2010.06.021 Associated datasets in the data catalog: Holmes, R.T., N.L. Rodenhouse, and M.T. Hallworth. 2022. Bird Abundances at the Hubbard Brook Experimental Forest (1969-present) and on three replicate plots (1986-2000) in the White Mountain National Forest ver 8. Environmental Data Initiative. https://doi.org/10.6073/pasta/6422a72893616ce9020086de5a5714cd (Accessed 2023-12-17). 
    more » « less