Abstract Dual‐ion batteries that use anions and cations as charge carriers represent a promising energy‐storage technology. However, an uncharted area is to explore transition metals as electrodes to host carbonate in conversion reactions. Here we report the reversible conversion reaction from copper to Cu2CO3(OH)2, where the copper electrode comprising K2CO3and KOH solid is self‐sufficient with anion‐charge carriers. This electrode dissociates and associates K+ions during battery charge and discharge. The copper active mass and the anion‐bearing cathode exhibit a reversible capacity of 664 mAh g−1and 299 mAh g−1, respectively, and relatively stable cycling in a saturated mixture electrolyte of K2CO3and KOH. The results open an avenue to use carbonate as a charge carrier for batteries to serve for the consumption and storage of CO2. 
                        more » 
                        « less   
                    
                            
                            Reversible Copper Cathode for Nonaqueous Dual‐Ion Batteries
                        
                    
    
            Abstract Most reported cathodes of nonaqueous dual‐ion batteries (DIBs) host anions via insertion reactions. It is necessary to explore new cathode chemistry to increase the battery energy density. To date, transition metals have yet to be investigated for nonaqueous DIBs, albeit they may offer high capacity in anodic conversion reactions. Here, we report that bulk copper powder exhibits a high reversible capacity of 762 mAh g−1at 3.2 V vs. Li+/Li and relatively stable cycling in common organic electrolytes. The operation of the copper electrode is coupled with the transfer of anion charge carriers. An anion exchange membrane separator is employed to prevent Cu2+from crossing from the catholyte to the anode side. We designed an unbalanced electrolyte with a more concentrated anolyte than a catholyte. This addresses the concentration overpotential ensued during charge and facilitates the high specific capacity and enhanced reversibility. This finding provides a promising direction for high‐energy DIBs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2215645
- PAR ID:
- 10380262
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 47
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract New acceptor‐type graphite intercalation compounds (GICs) offer candidates of cathode materials for dual‐ion batteries (DIBs), where superhalides represent the emerging anion charge carriers for such batteries. Here, the reversible insertion of [LiCl2]−into graphite from an aqueous deep eutectic solvent electrolyte of 20mLiCl+20mcholine chloride is reported. [LiCl2]−is the primary anion species in this electrolyte as revealed by the femtosecond stimulated Raman spectroscopy results, particularly through the rarely observed H–O–H bending mode. The insertion of Li–Cl anionic species is suggested by7Li magic angle spinning nuclear magnetic resonance results that describe a unique chemical environment of Li+ions with electron donors around.2H nuclear magnetic resonance results suggest that water molecules are co‐inserted into graphite. Density functional theory calculations reveal that the anionic insertion of hydrated [LiCl2]−takes place at a lower potential, being more favorable. X‐ray diffraction and the Raman results show that the insertion of [LiCl2]−creates turbostratic structure in graphite instead of forming long‐range ordered GICs. The storage of [LiCl2]−in graphite as a cathode for DIBs offers a capacity of 114 mAh g−1that is stable over 440 cycles.more » « less
- 
            Abstract A stable lean‐electrolyte operating lithium–sulfur (Li–S) battery based on a cathode of Li2S in situ electrocatalytically deposited from L2S8catholyte onto a support of metallic molybdenum disulfide (1T‐MoS2) on carbon cloth (CC) is created. The 1T‐MoS2significantly accelerates the conversion Li2S8catholyte to Li2S, chemically adsorbs lithium polysulfide (LiPSs) from solution, and suppresses crossover of the LiPSs to the anode. These experimental findings are explained by density functional theory calculations that show that 1T‐MoS2gives rise to strong adsorption of polysulfides on its surface and is electrocatalytic for the targeted reversible Li–S conversion reactions. The CC/1T‐MoS2electrode in a Li–S battery delivers an initial capacity of 1238 mAh g−1, with a low capacity fade of only 0.051% per cycle over 500 cycles at 0.5C. Even at a high sulfur loading (4.4 mg cm−2) and low electrolyte/S (E/S) ratio of 3.7 µL mg−1, the battery achieves an initial reversible capacity of 1176 mA h g−1at 0.5C, with 87% capacity retention after 160 cycles. The post 500 cycles Li metal opposing 1T‐MoS2is substantially smoother than the Li opposing CC, with XPS supporting the role of 1T‐MoS2in inhibiting LiPSs crossover.more » « less
- 
            Abstract Redox flow batteries (RFBs) with high energy densities are essential for efficient and sustainable long‐term energy storage on a grid scale. To advance the development of nonaqueous RFBs with high energy densities, a new organic RFB system employing a molecularly engineered tetrathiafulvalene derivative ((PEG3/PerF)‐TTF) as a high energy density catholyte was developed. A synergistic approach to the molecular design of tetrathiafulvalene (TTF) was applied, with the incorporation of polyethylene glycol (PEG) chains, which enhance its solubility in organic carbonate electrolytes, and a perfluoro (PerF) group to increase its redox potential. When paired with a lithium metal anode, the two‐electron‐active(PEG3/PerF)‐TTFcatholyte produced a cell voltage of 3.56 V for the first redox process and 3.92 V for the second redox process. In cyclic voltammetry and flow cell tests, the redox chemistry exhibited excellent cycling stability. The Li|(PEG3/PerF)‐TTFbatteries, with concentrations of 0.1 M and 0.5 M, demonstrated capacity retention rates of ~94 % (99.87 % per cycle, 97.52 % per day) and 90 % (99.93 % per cycle, 99.16 % per day), and the average Coulombic efficiencies of 99.38 % and 98.35 %, respectively. The flow cell achieved a high power density of 129 mW/cm2. Furthermore, owing to the high redox potential and solubility of(PEG3/PerF)‐TTF, the flow cell attained a high operational energy density of 72 Wh/L (100 Wh/L theoretical). A 0.75 M flow cell exhibited an even higher operational energy density of 96 Wh/L (150 Wh/L theoretical).more » « less
- 
            Abstract Lithium-based nonaqueous redox flow batteries (LRFBs) are alternative systems to conventional aqueous redox flow batteries because of their higher operating voltage and theoretical energy density. However, the use of ion-selective membranes limits the large-scale applicability of LRFBs. Here, we report high-voltage membrane-free LRFBs based on an all-organic biphasic system that uses Li metal anode and 2,4,6-tri-(1-cyclohexyloxy-4-imino-2,2,6,6-tetramethylpiperidine)-1,3,5-triazine (Tri-TEMPO), N-propyl phenothiazine (C3-PTZ), and tris(dialkylamino)cyclopropenium (CP) cathodes. Under static conditions, the Li||Tri-TEMPO, Li||C3-PTZ, and Li||CP batteries with 0.5 M redox-active material deliver capacity retentions of 98%, 98%, and 92%, respectively, for 100 cycles over ~55 days at the current density of 1 mA/cm2and a temperature of 27 °C. Moreover, the Li||Tri-TEMPO (0.5 M) flow battery delivers an initial average cell discharge voltage of 3.45 V and an energy density of ~33 Wh/L. This flow battery also demonstrates 81% of capacity for 100 cycles over ~45 days with average Coulombic efficiency of 96% and energy efficiency of 82% at the current density of 1.5 mA/cm2and at a temperature of 27 °C.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
