Abstract Activity density (AD), the rate that an individual taxon or its biomass moves through the environment, is used both to monitor communities and quantify the potential for ecosystem work. The Abundance Velocity Hypothesis posited that AD increases with aboveground net primary productivity (ANPP) and is a unimodal function of temperature. Here we show that, at continental extents, increasing ANPP may have nonlinear effects on AD: increasing abundance, but decreasing velocity as accumulating vegetation interferes with movement. We use 5 yr of data from the NEON invertebrate pitfall trap arrays including 43 locations and four habitat types for a total of 77 habitat–site combinations to evaluate continental drivers of invertebrate AD. ANPP and temperature accounted for one‐third to 92% of variation in AD. As predicted, AD was a unimodal function of temperature in forests and grasslands but increased linearly in open scrublands. ANPP yielded further nonlinear effects, generating unimodal AD curves in wetlands, and bimodal curves in forests. While all four habitats showed no AD trends over 5 yr of sampling, these nonlinearities suggest that trends in AD, often used to infer changes in insect abundance, will vary qualitatively across ecoregions.
more »
« less
Temperature–habitat interactions constrain seasonal activity in a continental array of pitfall traps
Abstract Activity density (AD), the rate at which animals collectively move through their environment, emerges as the product of a taxon's local abundance and its velocity. We analyze drivers of seasonal AD using 47 localities from the National Ecological Observatory Network (NEON) both to better understand variation in ecosystem rates like pollination and seed dispersal as well as the constraints of using AD to monitor invertebrate populations. AD was measured as volume from biweekly pitfall trap arrays (ml trap−114 days−1). Pooled samples from 2017 to 2018 revealed AD extrema at most temperatures but with a strongly positive overall slope. However, habitat types varied widely in AD's seasonal temperature sensitivity, from negative in wetlands to positive in mixed forest, grassland, and shrub habitats. The temperature of maximum AD varied threefold across the 47 localities; it tracked the threefold geographic variation in maximum growing season temperature with a consistent gap ofca. 3°C across habitats, a novel macroecological result. AD holds potential as an effective proxy for investigating ecosystem rates driven by activity. However, our results suggest that its use for monitoring insect abundance is complicated by the many ways that both abundance and velocity are constrained by a locality's temperature and plant physiognomy.
more »
« less
- Award ID(s):
- 1702426
- PAR ID:
- 10380294
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 104
- Issue:
- 1
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biddle, Jennifer F (Ed.)ABSTRACT The abundant and metabolically versatile aquatic bacterial order,Rhodobacterales, influences marine biogeochemical cycles. We assessedRhodobacteralesmetagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closedRhodobacteralesgenomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized. Their abundances varied between the bays and were influenced by temperature, salinity, and silicate and phosphate concentrations.Rhodobacteralesgenera possessed unique and shared genes for transporters, photoheterotrophy, complex carbon degradation, nitrogen, and sulfur metabolism reflecting their seasonal differences in abundance and activity.Planktomarinagenomospecies were more ubiquitous than the more niche specialists, HIMB11, CPC320, LFER01, and MED-G52. Their estimated growth rates were correlated to various factors including phosphate and silicate concentrations, cell density, and light. Metatranscriptomic analysis of four abundant genomospecies commonly revealed that aerobic anoxygenic photoheterotrophy-associated transcripts were highly abundant at night. TheseRhodobacteralesalso differentially expressed genes for CO oxidation and nutrient transport and use between different environmental conditions. Phosphate concentrations and light penetration in the Chesapeake Bay likely contributed to higher estimated growth rates of HIMB11 and LFER01, respectively, in summer where they maintained higher ribosome concentrations and prevented physiological gene expression constraints by downregulating transporter genes compared to the Delaware Bay. Our study highlights the spatial and temporal shifts in estuarineRhodobacteraleswithin and between these bays reflected through their abundance, unique metabolisms, estimated growth rates, and activity changes. IMPORTANCEIn the complex web of global biogeochemical nutrient cycling, theRhodobacteralesemerge as key players, exerting a profound influence through their abundance and dynamic activity. While previous studies have primarily investigated these organisms within marine ecosystems, this study delves into their roles within estuarine environments using a combination of metagenomic and metatranscriptomic analyses. We uncovered a range ofRhodobacteralesgenera, from generalists to specialists, each exhibiting distinct abundance patterns and gene expression profiles. This diversity equips them with the capacity to thrive amidst the varying environmental conditions encountered within dynamic estuarine habitats. Crucially, our findings illuminate the adaptable nature of estuarineRhodobacterales, revealing their various energy production pathways and diverse resource management, especially during phytoplankton or algal blooms. Whether adopting a free-living or particle-attached existence, these organisms demonstrate remarkable flexibility in their metabolic strategies, underscoring their pivotal role in driving ecosystem dynamics within estuarine ecosystems.more » « less
-
Abstract Collecting environmental DNA (eDNA) as a nonlethal sampling approach has been valuable in detecting the presence/absence of many imperiled taxa; however, its application to indicate species abundance poses many challenges. A deeper understanding of eDNA dynamics in aquatic systems is required to better interpret the substantial variability often associated with eDNA samples. Our sampling design took advantage of natural variation in juvenile Atlantic salmon (Salmo salar) distribution and abundance along 9 km of a single river in the Province of New Brunswick (Canada), covering different spatial and temporal scales to address the unknown seasonal impacts of environmental variables on the quantitative relationship between eDNA concentration and species abundance. First, we asked whether accounting for environmental variables strengthened the relationship between eDNA and salmon abundance by sampling eDNA during their spring seaward migration. Second, we asked how environmental variables affected eDNA dynamics during the summer as the parr abundance remained relatively constant. Spring eDNA samples were collected over a 6‐week period (12 times) near a rotary screw trap that captured approximately 18.6% of migrating smolts, whereas summer sampling occurred (i) at three distinct salmon habitats (9 times) and (ii) along the full 9 km (3 times). We modeled eDNA concentration as a product of fish abundance and environmental variables, demonstrating that (1) with inclusion of abundance and environmental covariates, eDNA was highly correlated with spring smolt abundance and (2) the relationships among environmental covariates and eDNA were affected by seasonal variation with relatively constant parr abundance in summer. Our findings underscore that with appropriate study design that accounts for seasonal environmental variation and life history phenology, eDNA salmon population assessments may have the potential to evaluate abundance fluctuations in spring and summer.more » « less
-
ABSTRACT Marine sediments harbour diverse microbial populations, but with increasing depth, these microbes are thought to have low activity due to depleted electron acceptors and lack of new organic matter after burial. However, physiochemical changes in environmental parameters could impact the metabolic activity of microbes in marine sediments. We performed seasonal sampling of shallow sediments to examine changes in population and abundance in relation to physiochemical changes over the year. We used amplicon sequencing, quantitative PCR and geochemistry to assess seasonal abundance of microbial populations at 3 depths (12–14, 38–40 and 48–50 cm) in shallow coastal sediments. 16S rRNA amplicon sequencing showed the sediment microbiome consists of common sediment taxa with minor seasonal variation. However, bacterial gene counts of 16S rRNA genes were highest in summer (2.50 × 1012 genes/g of sediment) and lowest in spring (1.64 × 1011 genes/g sediment). We observed differences in sediment temperature at depth across seasons (Summer 28°C–25.5°C; Winter 8.7°C–6.3°C) and correlated changes in dissolved organic matter composition that are not typically reported for this environment. We conclude deeper microbial populations in shallow sediments may experience seasonal abundance shifts resulting in a more variable subsurface community than initially presumed in the literature.more » « less
-
ABSTRACT Intermittent streams are characterized by significant periods of low to no flow, yet are also frequently subjected to flashy, high floods. Floods alter ecosystem function and result in variable successional patterns across the stream network. Yet, the timing of restored function after floods in intermittent stream networks is relatively unexplored. We measured recovery of stream ecosystem function using rates of gross primary production (GPP), ecosystem respiration (ER), net ecosystem production (NEP), and the primary production to respiration ratio (P/R) across eight locations in the Kings Creek drainage basin with differing preflood conditions (previously dry [intermittent] or flowing [perennial]) over a 30‐d period following a 2‐yr return interval flood. We found that all metabolic rates (GPP, ER, NEP, P/R) varied primarily by time (days since flood) and antecedent flow, but not spatial network position (i.e., drainage area). Intermittent sites exhibited high rates of ER (0.17–3.33 g dissolved oxygen [DO] m−2d−1) following rewetting compared to perennial sites (0.03–1.17 g DO m−2d−1), while GPP, NEP, and P/R were slower to recover and varied less between sites of differing preflood conditions. Metabolic rates were not strongly influenced by other environmental conditions. A large proportion of variation was explained by the random effect of location. Our results suggest that metabolism is temporally asynchronous and highly heterogenous across intermittent watersheds and that antecedent hydrology (drying prior to rewetting) stimulates heterotrophic activity, likely dependent on terrestrially derived organic matter and nutrient subsidies.more » « less
An official website of the United States government
