skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 19, 2026

Title: Genome-resolved adaptation strategies of Rhodobacterales to changing conditions in the Chesapeake and Delaware Bays
ABSTRACT The abundant and metabolically versatile aquatic bacterial order,Rhodobacterales, influences marine biogeochemical cycles. We assessedRhodobacteralesmetagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closedRhodobacteralesgenomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized. Their abundances varied between the bays and were influenced by temperature, salinity, and silicate and phosphate concentrations.Rhodobacteralesgenera possessed unique and shared genes for transporters, photoheterotrophy, complex carbon degradation, nitrogen, and sulfur metabolism reflecting their seasonal differences in abundance and activity.Planktomarinagenomospecies were more ubiquitous than the more niche specialists, HIMB11, CPC320, LFER01, and MED-G52. Their estimated growth rates were correlated to various factors including phosphate and silicate concentrations, cell density, and light. Metatranscriptomic analysis of four abundant genomospecies commonly revealed that aerobic anoxygenic photoheterotrophy-associated transcripts were highly abundant at night. TheseRhodobacteralesalso differentially expressed genes for CO oxidation and nutrient transport and use between different environmental conditions. Phosphate concentrations and light penetration in the Chesapeake Bay likely contributed to higher estimated growth rates of HIMB11 and LFER01, respectively, in summer where they maintained higher ribosome concentrations and prevented physiological gene expression constraints by downregulating transporter genes compared to the Delaware Bay. Our study highlights the spatial and temporal shifts in estuarineRhodobacteraleswithin and between these bays reflected through their abundance, unique metabolisms, estimated growth rates, and activity changes. IMPORTANCEIn the complex web of global biogeochemical nutrient cycling, theRhodobacteralesemerge as key players, exerting a profound influence through their abundance and dynamic activity. While previous studies have primarily investigated these organisms within marine ecosystems, this study delves into their roles within estuarine environments using a combination of metagenomic and metatranscriptomic analyses. We uncovered a range ofRhodobacteralesgenera, from generalists to specialists, each exhibiting distinct abundance patterns and gene expression profiles. This diversity equips them with the capacity to thrive amidst the varying environmental conditions encountered within dynamic estuarine habitats. Crucially, our findings illuminate the adaptable nature of estuarineRhodobacterales, revealing their various energy production pathways and diverse resource management, especially during phytoplankton or algal blooms. Whether adopting a free-living or particle-attached existence, these organisms demonstrate remarkable flexibility in their metabolic strategies, underscoring their pivotal role in driving ecosystem dynamics within estuarine ecosystems.  more » « less
Award ID(s):
2025541
PAR ID:
10638068
Author(s) / Creator(s):
;
Editor(s):
Biddle, Jennifer F
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
91
Issue:
2
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal flooding poses the greatest threat to human life and is often the most common source of damage from coastal storms. From 1980 to 2020, the top 6, and 17 of the top 25, costliest natural disasters in the U.S. were caused by coastal storms, most of these tropical systems. The Delaware and Chesapeake Bays, two of the largest and most densely populated estuaries in the U.S. located in the Mid-Atlantic coastal region, have been significantly impacted by strong tropical cyclones in recent decades, notably Hurricanes Isabel (2003), Irene (2011), and Sandy (2012). Current scenarios of future climate project an increase in major hurricanes and the continued rise of sea levels, amplifying coastal flooding threat. We look at all North Atlantic tropical cyclones (TC) in the International Best Track Archive for Climate Stewardship (IBTrACS) database that came within 750 km of the Delmarva Peninsula from 1980 to 2019. For each TC, skew surge and storm tide are computed at 12 NOAA tide gauges throughout the two bays. Spatial variability of the detrended and normalized skew surge is investigated through cross-correlations, regional storm rankings, and comparison to storm tracks. We find Hurricanes Sandy (2012) and Isabel (2003) had the largest surge impact on the Delaware and Chesapeake Bay, respectively. Surge response to TCs in upper and lower bay regions are more similar across bays than to the opposing region in their own bay. TCs that impacted lower bay more than upper bay regions tended to stay offshore east of Delmarva, whereas TCs that impacted upper bay regions tended to stay to the west of Delmarva. Although tropical cyclones are multi-hazard weather events, there continues to be a need to improve storm surge forecasting and implement strategies to minimize the damage of coastal flooding. Results from this analysis can provide insight on the potential regional impacts of coastal flooding from tropical cyclones in the Mid-Atlantic. 
    more » « less
  2. Extreme storm surges can overwhelm many coastal flooding protection measures in place and cause severe damages to private communities, public infrastructure, and natural ecosystems. In the US Mid-Atlantic, a highly developed and commercially active region, coastal flooding is one of the most significant natural hazards and a year-round threat from both tropical and extra-tropical cyclones. Mean sea levels and high-tide flood frequency has increased significantly in recent years, and major storms are projected to increase into the foreseeable future. We estimate extreme surges using hourly water level data and harmonic analysis for 1980–2019 at 12 NOAA tide gauges in and around the Delaware and Chesapeake Bays. Return levels (RLs) are computed for 1.1, 3, 5, 10, 25, 50, and 100-year return periods using stationary extreme value analysis on detrended skew surges. Two traditional approaches are investigated, Block Maxima fit to General Extreme Value distribution and Points-Over-Threshold fit to Generalized Pareto distribution, although with two important enhancements. First, the GEV r -largest order statistics distribution is used; a modified version of the GEV distribution that allows for multiple maximum values per year. Second, a systematic procedure is used to select the optimum value for r (for the BM/GEVr approach) and the threshold (for the POT/GP approach) at each tide gauge separately. RLs have similar magnitudes and spatial patterns from both methods, with BM/GEVr resulting in generally larger 100-year and smaller 1.1-year RLs. Maximum values are found at the Lewes (Delaware Bay) and Sewells Point (Chesapeake Bay) tide gauges, both located in the southwest region of their respective bays. Minimum values are found toward the central bay regions. In the Delaware Bay, the POT/GP approach is consistent and results in narrower uncertainty bands whereas the results are mixed for the Chesapeake. Results from this study aim to increase reliability of projections of extreme water levels due to extreme storms and ultimately help in long-term planning of mitigation and implementation of adaptation measures. 
    more » « less
  3. Abstract Nitrogen (N) bioavailability affects phytoplankton growth and primary production in the aquatic environment. N bioavailability is partly determined by biological N cycling processes that either transform N species or remove fixed N. Reliable estimates of their kinetic parameters can help understand the distribution of N cycling processes. However, available estimates of kinetic parameters are often derived from microbial isolates and may not be representative of the natural environment. Observations are particularly lacking in estuarine and coastal waters. We conducted isotope tracer addition incubations to evaluate substrate affinities of nitrification, denitrification and anammox in the Chesapeake Bay water column. The half‐saturation constant for ammonia oxidation ranged from 0.38 to 0.75 μM ammonium, substantially higher than observed in the open oceans. Half‐saturation constants for denitrification—0.92–1.86 μM nitrite or 1.15 μM nitrate—were within the lower end or less than those reported for other aquatic environments and for denitrifier isolates. Interestingly, water column denitrification potential was comparable to that of sedimentary denitrification, highlighting the contribution of the water column to N removal during anoxia. Mostly undetectable anammox rates prevented us from deriving the half‐saturation constants, suggesting a low affinity of anammox. Using these substrate kinetics, we were able to predict in situ N cycling rates and explain the vertical distribution of N nutrient concentrations. Our newly derived substrate kinetics parameters can be useful for improving model representation of N nutrient dynamics in estuarine and coastal waters, which is critical for assessing the ecosystem productivity and function. 
    more » « less
  4. Oyster aquaculture is one of several methods for the restoration of Delaware Inland Bays; however, little is known about its potential impacts on the benthic community of the bays. In this study, water quality parameters were measured and polychaetes were collected from 24 sampling locations at Rehoboth, Indian River, and Little Assawoman Bays from July to October 2016 and 2017. We aimed to assess the impact of Eastern oyster farming under different stocking densities (50 and 250 oysters/gear) and distances away from the sites where the off-bottom gears are implemented (under gears, one meter, and five meters away). No significant impact was detected on polychaetes’ abundance and richness in regard to the presence of oyster gears. The number of polychaetes and species richness was significantly higher in Little Assawoman Bay in comparison to the Indian River and Rehoboth Bays. Results showed that the Ulva lactuca bloom that happened in 2016 could negatively impact the low abundance and richness observed in the polychaetes community. Similarly, the values of polychaetes abundance and species richness did not change significantly in samples that were taken far from the oyster gears. Dominant polychaetes families were Capitellidae and Glyceridae contributing to more than 70% of polychaetes’ number of individuals. Our results help to understand the role of oyster aquaculture in restoring the viability in the natural habitat of the Delaware Inland Bays. 
    more » « less
  5. null (Ed.)
    Abstract Marine Group II Euryarchaeota ( Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca . Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca . Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca . Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca . Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca . Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca . Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca . Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca . Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters. 
    more » « less