skip to main content

Title: Coherent momentum control of forbidden excitons

A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.

; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. The robust spin and momentum valley locking of electrons in two-dimensional semiconductors makes the valley degree of freedom of great utility for functional optoelectronic devices. Owing to the difference in optical selection rules for the different valleys, these valley electrons can be addressed optically. The electrons and excitons in these materials exhibit the valley Hall effect, where the carriers from specific valleys are directed to different directions under electrical or thermal bias. Here we report the optical analog of valley Hall effect, where the light emission from the valley-polarized excitons in a monolayerWS2propagates in different directions owing to the preferential coupling of excitonic emission to the high momentum states of the hyperbolic metamaterial. The experimentally observed effects are corroborated with theoretical modeling of excitonic emission in the near field of hyperbolic media. The demonstration of the optical valley Hall effect using a bulk artificial photonic media without the need for nanostructuring opens the possibility of realizing valley-based excitonic circuits operating at room temperature.

  2. Abstract

    As hosts for tightly-bound electron-hole pairs carrying quantized angular momentum, atomically-thin semiconductors of transition metal dichalcogenides (TMDCs) provide an appealing platform for optically addressing the valley degree of freedom. In particular, the valleytronic properties of neutral and charged excitons in these systems have been widely investigated. Meanwhile, correlated quantum states involving more particles are still elusive and controversial despite recent efforts. Here, we present experimental evidence for four-particle biexcitons and five-particle exciton-trions in high-quality monolayer tungsten diselenide. Through charge doping, thermal activation, and magnetic-field tuning measurements, we determine that the biexciton and the exciton-trion are bound with respect to the bright exciton and the trion, respectively. Further, both the biexciton and the exciton-trion are intervalley complexes involving dark excitons, giving rise to emissions with large, negative valley polarization in contrast to that of the two-particle excitons. Our studies provide opportunities for building valleytronic quantum devices harnessing high-order TMDC excitations.

  3. Abstract

    Isolated spins are the focus of intense scientific exploration due to their potential role as qubits for quantum information science. Optical access to single spins, demonstrated in III-V semiconducting quantum dots, has fueled research aimed at realizing quantum networks. More recently, quantum emitters in atomically thin materials such as tungsten diselenide have been demonstrated to host optically addressable single spins by means of electrostatic doping the localized excitons. Electrostatic doping is not the only route to charging localized quantum emitters and another path forward is through band structure engineering using van der Waals heterojunctions. Critical to this second approach is to interface tungsten diselenide with other van der Waals materials with relative band-alignments conducive to the phenomenon of charge transfer. In this work we show that the Type-II band-alignment between tungsten diselenide and chromium triiodide can be exploited to excite localized charged excitons in tungsten diselenide. Leveraging spin-dependent charge transfer in the device, we demonstrate spin selectivity in the preparation of the spin-valley state of localized single holes. Combined with the use of strain-inducing nanopillars to coordinate the spatial location of tungsten diselenide quantum emitters, we uncover the possibility of realizing large-scale deterministic arrays of optically addressable spin-valley holesmore »in a solid state platform.

    « less

    In this paper, we probe the hot, post-shock gas component of quasar-driven winds through the thermal Sunyaev–Zel’dovich (tSZ) effect. Combining data sets from the Atacama Cosmology Telescope, the Herschel Space Observatory, and the Very Large Array, we measure average spectral energy distributions of 109 829 optically selected, radio quiet quasars from 1.4 to 3000 GHz in six redshift bins between 0.3 < z < 3.5. We model the emission components in the radio and far-infrared, plus a spectral distortion from the tSZ effect. At z > 1.91, we measure the tSZ effect at 3.8σ significance with an amplitude corresponding to a total thermal energy of 3.1 × 1060 erg. If this energy is due to virialized gas, then our measurement implies quasar host halo masses are ∼6 × 1012 h−1 M⊙. Alternatively, if the host dark matter halo masses are ∼2 × 1012 h−1 M⊙ as some measurements suggest, then we measure a >90 per cent excess in the thermal energy over that expected due to virialization. If the measured SZ effect is primarily due to hot bubbles from quasar-driven winds, we find that $(5^{+1.2}_{-1.3}$) per cent of the quasar bolometric luminosity couples to the intergalactic medium over a fiducial quasar lifetime of 100 Myr. An additional source of tSZ may be correlated structure, and further workmore »is required to separate the contributions. At z ≤ 1.91, we detect emission at 95 and 148 GHz that is in excess of thermal dust and optically thin synchrotron emission. We investigate potential sources of this excess emission, finding that CO line emission and an additional optically thick synchrotron component are the most viable candidates.

    « less
  5. Abstract

    Ever since its inception, coherent excited states of semiconductors have been the focus of semiconductor materials research to evolve into a vibrant field of low-dimensional solid-state physics. The field is gaining new momentum these days due to emerging transdimensional semiconductors such as van der Waals bound layers of transition metal dichalcogenides (TMDs) of controlled thickness. Here, we develop the theory of magnetic-field-induced Wigner crystallization for charged interlayer excitons (CIE) discovered recently in TMD heterobilayers. We derive the ratio of the potential interaction energy to the kinetic energy for the many-particle CIE system in the perpendicular magnetostatic field of an arbitrary strength and predict the crystallization effect in the strong field regime. We show that magnetic-field-induced Wigner crystallization and melting of CIEs can be observed in magneto-photoluminescence experiments with TMD bilayers of systematically varied electron-hole doping concentrations. Our results advance the capabilities of this new generation of transdimensional quantum materials.