Abstract Flexible metal–organic Frameworks (MOFs) are an interesting class of materials due to their diverse properties. One representative of this class is the layered‐pillar MOF DUT‐8(Ni). This MOF consists of Ni2paddle wheels interconnected by naphthalene dicarboxylate linkers and dabco pillars (Ni2(ndc)2(dabco), ndc = 2,6‐naphthalene–dicarboxylate, dabco = 1,4‐diazabicyclo‐[2.2.2]‐octane). DUT‐8(Ni) undergoes a volume change of over 140% upon adsorption of guest molecules. Herein, a ligand field molecular mechanics (LFMM) study of the CO2‐induced flexibility of DUT‐8(Ni) is presented. LFMM is able to reproduce experimental and DFT structural features as well as properties that require large simulation cells. It is shown that the transformation energy from a closed to open state of the MOF is overcompensated fivefold by the host–guest interactions. Structural characteristics of the MOF explain the shape of the energy profile at different loading states and provide useful insights to the interpretation of previous experimental results.
more »
« less
Inter‐Network Charge‐Transfer Excited State Formation Within a Two‐fold Catenated Metal–Organic Framework
Abstract Charge‐transfer excited state (CTES) defines the ability to split photon energy into work producing redox equivalents suitable for photocatalysis. Here, we report inter‐net CTES formation within a two‐fold catenated crystalline metal–organic framework (MOF), constructed with two linkers, N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide (DPNDI) and 2,6‐dicarboxynaphthalene (NDC). The structural flexibility puts two complementary linkers from two nets in a proximal position to interact strongly. Supported by the electrochemical and steady‐state electronic spectroscopic data, this ground‐state interaction facilitates forming CTES that can be populated by direct excitation. We map the dynamics of the CTES which persists over a few nanoseconds and highlight the utilities of such relatively long‐lived CTES as enhanced conductivity of the MOF under light over that measured in dark and as a proof‐of‐the‐principle test, photo‐reduction of methyl viologen under white light.
more »
« less
- Award ID(s):
- 1944903
- PAR ID:
- 10380299
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 2
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An ionic metal–organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4′-pyridyl-2,2′:6′,2′′-terpyridine (pytpy) and a simple iron( ii ) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy) 2 Fe II cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl 2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl 3 FeOFeCl 3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn -selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans -alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis.more » « less
-
MOF-encapsulated nanoparticles (NP@MOFs) are hybrid, heterogeneous catalysts, where the MOF could boost the activity and selectivity of the encapsulated NP for the reaction of choice by controlling reactant orientation. However, due to overwhelming combinatorics, methods to rapidly identify promising NP + MOF combinations for a given application are needed. Earlier work used a “surrogate” inert pore on top of NP-representative surfaces to generically capture MOF steric effects, hence enabling computational screening to focus on NP composition. However, the surrogate pore method neglects electronic effects of the MOF on the NP. Here, we use density functional theory to study how paradigmatic MOF linkers (imidazolate, carboxylate, and thiolate) impact the electronic structure of representative metal surfaces, and in turn the binding of small species, whose formation energies are commonly used in descriptor-based catalyst screening. We find that the coordinating moiety and functionalization of the linker modulates the shift in the metal d-band center and the electron transfer, which is correlated to experimentally measurable quantities such as C–O vibration frequencies. However, in the majority of cases, the effect of the linker on binding energies (for C*, O*, N*, H*, OH*, CH 3 * and CO*) was less than 10 kJ mol −1 . Furthermore, scaling relationships between binding energies were only slightly affected by linker-originated electronic effects. Therefore, activity/selectivity “heat maps” derived from calculations under “generic” steric constrains could remain useful to screen the optimal NP composition of an NP@MOF catalyst. On the other hand, the placement of a given NP composition on the aforementioned heat maps is affected by the MOF. For an n -butane oxidation case study, we estimated that Ag 3 Pd—a promising NP composition for selective 1-butanol formation according to previous screenings using the surrogate pore method—has a ∼85% probability of retaining a selectivity for 1-butanol above 75% when encapsulated in a carboxylic MOF of suitable pore size.more » « less
-
Pillared paddle-wheel-based metal-organic framework (MOF) materials are an attractive target as they offer a reliable method for constructing well-defined, multifunctional materials. A drawback of these materials, which has limited their application, is their tendency to form catenated frameworks with little accessible volume. To eliminate this disadvantage, it is necessary to investigate strategies for constructing non-catenated pillared paddle-wheel MOFs. Hydrogen-bonding substituents on linkers have been postulated to prevent catenation in certain frameworks and, in this work, we present a new MOF to further bolster this theory. Using 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid, BPDC-(NH2)2, linkers and dipyridyl glycol, DPG, pillars, we assembled a MOF with pcu topology. The new material is non-catenated, exhibiting large accessible pores and low density. To the best of our knowledge, this material constitutes the pcu framework with the largest pore volume and lowest density. We attribute the lack of catenation to the presence of H-bonding substituents on both linkers.more » « less
An official website of the United States government
