skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: COMPACT—a new complex plasma facility for the ISS
Abstract Complex plasma is a state of soft matter where micrometer-sized particles are immersed in a weakly ionized gas. The particles acquire negative charges of the order of several thousand elementary charges in the plasma, and they can form gaseous, liquid and crystalline states. Direct optical observation of individual particles allows to study their dynamics on the kinetic level even in large many-particle systems. Gravity is the dominant force in ground-based experiments, restricting the research to vertically compressed, inhomogeneous clouds, or two-dimensional systems, and masking dynamical processes mediated by weaker forces. An environment with reduced gravity, such as provided on the International Space Station (ISS), is therefore essential to overcome this limitations. We will present the research goals for the next generation complex plasma facility COMPACT to be operated onboard the ISS. COMPACT is envisaged as an international multi-purpose and multi-user facility that gives access to the full three-dimensional kinetic properties of the particles.  more » « less
Award ID(s):
1740379
PAR ID:
10380317
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Plasma Physics and Controlled Fusion
Volume:
64
Issue:
12
ISSN:
0741-3335
Page Range / eLocation ID:
Article No. 124006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the presence of gravity, the micrometer-sized charged dust particles in a complex (dusty) plasma are compressed into thin layers. However, under the microgravity conditions of the Plasma Kristall-4 (PK-4) experiment on the International Space Station (ISS), the particles fill the plasma, allowing us to investigate the properties of a three-dimensional multi-particle system. This paper examines the change in the spatial ordering and thermal state of the particle system created when dust particles are stopped by periodic oscillations of the electric field, known as polarity switching, in a dc glow discharge plasma. Data from the ISS are compared against experiments performed using a ground-based reference version of PK-4 and numerical simulations. Initial results show substantive differences in the velocity distribution functions between experiments on the ground and in microgravity. There are also differences in the motion of the dust cloud; in microgravity, there is an expansion of the dust cloud at the application of polarity switching, which is not seen in the ground-based experiments. It is proposed that the dust cloud in microgravity gains thermal energy at the application of polarity switching due to this expansion. Simulation results suggest that this may be due to a modification in the effective screening length at the onset of polarity switching, which allows the dust particles to utilize energy from the potential energy in the configuration of the dust cloud. Experimental measurements and simulations show that an extended time (much greater than the Epstein drag decay) is required to dissipate this energy. 
    more » « less
  2. From the near-Earth solar wind to the intracluster medium of galaxy clusters, collisionless, high-beta, magnetized plasmas pervade our universe. Energy and momentum transport from large-scale fields and flows to small-scale motions of plasma particles is ubiquitous in these systems, but a full picture of the underlying physical mechanisms remains elusive. The transfer is often mediated by a turbulent cascade of Alfvénic fluctuations as well as a variety of kinetic instabilities; these processes tend to be multi-scale and/or multi-dimensional, which makes them difficult to study using spacecraft missions and numerical simulations alone. Meanwhile, existing laboratory devices struggle to produce the collisionless, high ion beta ($$\beta _i \gtrsim 1$$), magnetized plasmas across the range of scales necessary to address these problems. As envisioned in recent community planning documents, it is therefore important to build a next generation laboratory facility to create a$$\beta _i \gtrsim 1$$, collisionless, magnetized plasma in the laboratory for the first time. A working group has been formed and is actively defining the necessary technical requirements to move the facility towards a construction-ready state. Recent progress includes the development of target parameters and diagnostic requirements as well as the identification of a need for source-target device geometry. As the working group is already leading to new synergies across the community, we anticipate a broad community of users funded by a variety of federal agencies (including National Aeronautics and Space Administration, Department of Energy and National Science Foundation) to make copious use of the future facility. 
    more » « less
  3. A variety of colloidal structures observed in terrestrial experiments could also have been influenced by gravity effects (particle sedimentation, convection, etc.) It is often assumed that weightlessness simulated in a time-averaged sense by slowly rotating a specimen in a clinostat about an axis perpendicular to the gravity direction that is widely used in biological tests would reduce the effect of gravity on suspensions. Experiments on a non-buoyancy-matched suspension in flights in NASA Zero-gravity aircraft revealed that particle patterns formed in a clinostat and under normal gravity are actually similar. A requirement for matching densities between particles and a solvent severely limits possibilities to study the field-induced structuring in colloids in terrestrial experiments. Long-term microgravity in ISS offers unique opportunity to employ not density matched suspensions to explore a wide range of the mismatch of electric characteristics between particles and a solvent. We will report experimental data on the field driven structure formation in suspensions and present our approach to the development of ISS experiments. The aim is to understand mechanisms of structure formation and suggest novel routes for creating functional materials. *NASA NNX13AQ53G, NSF1832260. 
    more » « less
  4. In this paper, we give a detailed description of a novel plasma chamber—the Zyflex chamber—that has been specifically designed for complex/dusty plasma research under reduced gravitational influence as realized during parabolic flight or aboard the International Space Station. The cylindrical, radio-frequency driven discharge device includes a variety of innovations that, for example, allow us to flexibly adjust plasma parameters and its volume via enhanced plasma generation control and a movable, multi-segmented electrode system. The new complex/dusty plasma research tool also supports, due to its overall increased size compared to former space based complex plasma experiments such as PKE-Nefedov or PK-3 Plus, much larger particle systems. Additionally, it can be operated at much lower neutral gas pressures, thus reducing the damping of particle motion considerably. Beyond the technical description and particle-in-cell simulation based characterization of the plasma vessel, we show sample results from experiments performed with this device in the laboratory as well as during parabolic flights, both of which clearly demonstrate the new quality of complex/dusty plasma research that becomes accessible with this new plasma device. 
    more » « less
  5. Abstract It is common in mesoscopic systems to find instances where several charges interact among themselves. These particles are usually confined by an external potential that shapes the symmetry of the equilibrium charge configuration. In the case of classical charges moving on a plane and repelling each other via the Coulomb potential, they possess a ground state à la Thomson or Wigner crystal. As the number of particles N increases, the number of local minima grows exponentially and direct or heuristic optimization methods become prohibitively costly. Therefore the only feasible approximation to the problem is to treat the system in the continuum limit. Since the underlying framework is provided by potential theory, we shall by‐pass the corresponding mathematical formalism and list the most common cases found in the literature. Then we prove a (albeit known) mathematical correspondence that will enable us to re‐discover analytical results in electrostatics. In doing so, we shall provide different methods for finding the equilibrium surface density of charges, analytical and numerical. Additionally, new systems of confined charges in three‐dimensional surfaces will be under scrutiny. Finally, we shall highlight exact results regarding a modified power‐law Coulomb potential in thed‐dimensional ball, thus generalizing the existing literature. 
    more » « less