Programming-by-example (PBE) is a synthesis paradigm that allows users to generate functions by simply providing input-output examples. While a promising interaction paradigm, synthesis is still too slow for realtime interaction and more widespread adoption. Existing approaches to PBE synthesis have used automated reasoning tools, such as SMT solvers, as well as works applying machine learning techniques. At its core, the automated reasoning approach relies on highly domain specific knowledge of programming languages. On the other hand, the machine learning approaches utilize the fact that when working with program code, it is possible to generate arbitrarily large training datasets. In this work, we propose a system for using machine learning in tandem with automated reasoning techniques to solve Syntax Guided Synthesis (SyGuS) style PBE problems. By preprocessing SyGuS PBE problems with a neural network, we can use a data driven approach to reduce the size of the search space, then allow automated reasoning-based solvers to more quickly find a solution analytically. Our system is able to run atop existing SyGuS PBE synthesis tools, decreasing the runtime of the winner of the 2019 SyGuS Competition for the PBE Strings track by 47.65% to outperform all of the competing tools.
more »
« less
Unifying Framework for Optimizations in Non-Boolean Formalisms
Abstract Search-optimization problems are plentiful in scientific and engineering domains. Artificial intelligence (AI) has long contributed to the development of search algorithms and declarative programming languages geared toward solving and modeling search-optimization problems. Automated reasoning and knowledge representation are the subfields of AI that are particularly vested in these developments. Many popular automated reasoning paradigms provide users with languages supporting optimization statements. Recall integer linear programming, MaxSAT, optimization satisfiability modulo theory, (constraint) answer set programming. These paradigms vary significantly in their languages in ways they express quality conditions on computed solutions. Here we propose a unifying framework of so-called extended weight systems that eliminates syntactic distinctions between paradigms. They allow us to see essential similarities and differences between optimization statements provided by distinct automated reasoning languages. We also study formal properties of the proposed systems that immediately translate into formal properties of paradigms that can be captured within our framework.
more »
« less
- Award ID(s):
- 1707371
- PAR ID:
- 10380342
- Date Published:
- Journal Name:
- Theory and Practice of Logic Programming
- ISSN:
- 1471-0684
- Page Range / eLocation ID:
- 1 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Differential privacy offers a formal framework for reasoning about the privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analysis results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages to ease the implementation of differentially private analyses. Even though these programming languages provide support for reasoning about privacy, most of them disregard reasoning about the accuracy of data analyses. To overcome this limitation, we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy, and their trade-offs. The distinguishing feature of DPella is a novel component that statically tracks the accuracy of different data analyses. To provide tight accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can calibrate the privacy parameters to meet the accuracy requirements, and vice versa.more » « less
-
Large Language Models (LLMs) have made significant strides in various intelligent tasks but still struggle with complex action reasoning tasks that require systematic search. To address this limitation, we introduce a method that bridges the natural language understanding capability of LLMs with the symbolic reasoning capability of action languages---formal languages for reasoning about actions. Our approach, termed {\sf LLM+AL}, leverages the LLM's strengths in semantic parsing and commonsense knowledge generation alongside the action language's expertise in automated reasoning based on encoded knowledge. We compare {\sf LLM+AL} against state-of-the-art LLMs, including {\sc ChatGPT-4}, {\sc Claude 3 Opus}, {\sc Gemini Ultra 1.0}, and {\sc o1-preview}, using benchmarks for complex reasoning about actions. Our findings indicate that while all methods exhibit various errors, {\sf LLM+AL}, with relatively simple human corrections, consistently leads to correct answers, whereas using LLMs alone does not yield improvements even after human intervention. {\sf LLM+AL} also contributes to automated generation of action languages.more » « less
-
Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous systems. Increasingly, they are deployed in high-assurance applications, leading to a compelling use case for formal verification approaches. In this paper, we present an efficient range estimation algorithm that iterates between an expensive global combinatorial search using mixed-integer linear programming problems, and a relatively inexpensive local optimization that repeatedly seeks a local optimum of the function represented by the NN. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate applications of our approach to computing flowpipes for neural network-based feedback controllers. We show that the use of local search in conjunction with mixed-integer linear programming solvers effectively reduces the combinatorial search over possible combinations of active neurons in the network by pruning away suboptimal nodes.more » « less
-
Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous systems. Increasingly, they are deployed in high-assurance applications, leading to a compelling use case for formal verification approaches. In this paper, we present an efficient range estimation algorithm that iterates between an expensive global combinatorial search using mixed-integer linear programming problems, and a relatively inexpensive local optimization that repeatedly seeks a local optimum of the function represented by the NN. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate applications of our approach to computing flowpipes for neural network-based feedback controllers. We show that the use of local search in conjunction with mixed-integer linear programming solvers effectively reduces the combinatorial search over possible combinations of active neurons in the network by pruning away suboptimal nodes.more » « less
An official website of the United States government

