skip to main content


Title: Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms
Abstract

Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described.

 
more » « less
Award ID(s):
1734145
NSF-PAR ID:
10380367
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
VIEW
Volume:
1
Issue:
4
ISSN:
2688-268X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix‐assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI‐MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix‐free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra‐trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA‐LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA‐LDI‐MSI.

     
    more » « less
  2. Abstract

    Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix‐assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI‐MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix‐free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra‐trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA‐LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA‐LDI‐MSI.

     
    more » « less
  3. Lee, YJ (Ed.)
    The ability to study and visualize metabolites on a cellular and sub-cellular level is important for gaining insights into biological pathways and metabolism of multicellular organisms. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a powerful analytical tool for metabolomics experiments due to its high sensitivity and small sampling size. The spatial resolution in MALDI-MSI is mainly limited by the number of molecules available in a small sampling size. When the sampling size is low enough to achieve cellular or subcellular spatial resolution, signal intensity is sacrificed making poorly ionized metabolites difficult to detect. To overcome this limitation, on-tissue chemical derivatization reactions have been used to enhance the desorption/ionization efficiency of selected classes of compounds by adding a functional group with a permanent positive charge or one that can be easily ionized. By utilizing several chemical derivatizations in parallel, metabolite coverage can be drastically improved. This chapter outlines methodology for sample preparation and data analysis for on-tissue chemical derivatization using various derivatization reagents. 
    more » « less
  4. Rationale

    The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential.

    Methods

    Theinletandvacuumionization methods of solvent‐assisted ionization (SAI), matrix‐assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed.

    Results

    Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization. We demonstrate the utility of multi‐ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub‐atmospheric pressure (vacuumMAI). Simplicity and use of a wide array of matrices are attained using a conduit (inletionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on‐probe reactions are analyzed directly and, especially in the case ofvacuumionization, without concern of carryover or instrument contamination.

    Conclusions

    Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.

     
    more » « less
  5. Abstract

    Mass spectrometry imaging (MSI) of volatile metabolites is challenging, especially in matrix‐assisted laser desorption/ionization (MALDI). Most MALDI ion sources operate in vacuum, which leads to the vaporization of volatile metabolites during analysis. In addition, tissue samples are often dried during sample preparation, leading to the loss of volatile metabolites even for other MSI techniques. On‐tissue chemical derivatization can dramatically reduce the volatility of analytes. Herein, a derivatization method is proposed utilizing N,N,N‐trimethyl‐2‐(piperazin‐1‐yl)ethan‐1‐aminium iodide to chemically modify short‐chain fatty acids in chicken cecum, ileum, and jejunum tissue sections before sample preparation for MSI visualization.

     
    more » « less