skip to main content


Title: Controlling impurity-induced disordering via mask strain for high-performance vertical-cavity surface-emitting lasers
Impurity-induced disordering (IID) in vertical-cavity surface-emitting lasers (VCSELs) has been shown to provide enhanced performance, such as achieving single fundamental-mode operation with higher output powers when compared to conventional VCSELs. This work presents the performance of oxide-confined, λ ~ 850 nm, VCSELs fabricated with varying IID aperture sizes which are characterized for maximum single-fundamental-mode output power. The electrical and optical performance of these devices are shown in comparison to traditional oxide-confined VCSELs and the optimal IID aperture size is experimentally validated. Control of the lateral-to-vertical (L/V) IID aperture profile is then demonstrated through engineering the strain induced by the IID diffusion mask. This extensive control over the IID aperture enables improved, manufacturable, IID VCSEL designs.  more » « less
Award ID(s):
1640196
NSF-PAR ID:
10380426
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 International Conference on Compound Semiconductor Manufacturing Technology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The strain of diffusion masks utilized during the disordering process is demonstrated to modify the curvature of the disordering aperture. As a result, the various disordering apertures formed are shown to significantly impact the electro-optical performance and spectral characteristics of impurity-induced disordered VCSELs designed for single-fundamental-mode operation. An investigation and analysis of the electro-optical performance and spectral characteristics of IID VCSELs as a result of varying diffusion mask strains is presented. 
    more » « less
  2. The electrically pumped vertical-cavity surface- emitting laser (VCSEL) was first demonstrated with metal cavities by Iga (1979); however, the device threshold current was too high. Distributed Bragg reflector cavities proposed by Scifres and Burnham (1975) were adopted to improve the optical cavity loss. Yet, it was not a practical use until the discovery of the native oxide of AlGaAs and the insertion of quantum wells to provide simultaneous current and optical confinement in semiconductor laser by Holonyak and Dallesasse (1990). Later, the first “low- threshold” oxide-confined VCSEL was realized by Deppe (1994) and opened the door of commercial application for a gigabit energy-efficient optical links. At present, we demonstrated that the oxide-confined VCSELs have advanced error-free data trans- mission [bit-error rate (BER) ≤ 10−12]to 57 Gb/s at 25 °C and 50 Gb/s at 85 °C, and also demonstrated that the pre-leveled 16-quadrature amplitude modulation orthogonal frequency- division multiplexing data were achieved at 104 Gbit/s under back-to-back transmission with the received error vector mag- nitude, SNR, and BER of 17.3%, 15.2 dB, and 3.8 × 10−3, respectively. 
    more » « less
  3. Abstract

    Damping estimation from laboratory, full‐scale, or computational simulation is critical in response prediction of structures under wind, waves, or earthquake effects. A virtual dynamic shaker (VDS)‐based scheme was recently developed for system identification (SI) of structures for processing (weakly) stationary responses, that is, frequency and damping features that offers, especially the added advantage of its basic simplicity over other schemes. While the VDS has shown performance, equivalent to other popular SI schemes, it is based on the assumption of the global flatness of the load spectrum (i.e., white noise assumption) like used in most other SI schemes, which may not always be appropriate in practical applications. In addition, it is restricted to data from a single‐degree‐of‐freedom (SDOF) response (or unimodal response) to obtain accurate modal characteristics. To address these potential shortcomings, this study revisits the VDS scheme and offers an enhancement by invoking local flatness assumption (EVDS) to possibly improve the damping estimation with the assumption that the load spectrum is flat only around the natural frequencies of the desired modes. A new formulation involving the effect of the ground motion induced vertical vibrations of a building is also introduced for both the VDS and the EVDS. Extensive examples through numerical simulation and full‐scale data, including a comparison with other popular SI schemes, demonstrate the efficacy of the proposed EVDS scheme. To facilitate expeditious and convenient utilization of the proposed EVDS as well as the VDS, this study has implemented a web‐enabled framework, named VDS‐Damping, for on‐demand and on‐the‐fly applications through user‐friendly input and result interfaces. A recently developed mode decomposition scheme, state space‐based mode decomposition (SSBMD), is implemented in the framework to assist in analyzing output from multiple modes and eliminates restriction of SDOF system. Accordingly, the SSBMD can also serve as a stand‐alone mode decomposition tool to separate response in each mode. This framework enables users to estimate damping on‐the‐fly by uploading with ease their data.

     
    more » « less
  4. Choquette, Kent D. ; Lei, Chun ; Graham, Luke A. (Ed.)
    A wafer-scale CMOS-compatible process for heterogeneous integration of III-V epitaxial material onto silicon for photonic device fabrication is presented. Transfer of AlGaAs-GaAs Vertical-Cavity Surface-Emitting Laser (VCSEL) epitaxial material onto silicon using a carrier wafer process and metallic bonding is used to form III-V islands which are subsequently processed into VCSELs. The transfer process begins with the bonding of III-V wafer pieces epitaxy-down on a carrier wafer using a temporary bonding material. Following substrate removal, precisely-located islands of material are formed using photolithography and dry etching. These islands are bonded onto a silicon host wafer using a thin-film non-gold metal bonding process and the transfer wafer is removed. Following the bonding of the epitaxial islands onto the silicon wafer, standard processing methods are used to form VCSELs with non-gold contacts. The removal of the GaAs substrate prior to bonding provides an improved thermal pathway which leads to a reduction in wavelength shift with output power under continuous-wave (CW) excitation. Unlike prior work in which fullyfabricated VCSELs are flip-chip bonded to silicon, all photonic device processing takes place after the epitaxial transfer process. The electrical and optical performance of heterogeneously integrated 850nm GaAs VCSELs on silicon is compared to their as-grown counterparts. The demonstrated method creates the potential for the integration of III-V photonic devices with silicon CMOS, including CMOS imaging arrays. Such devices could have use in applications ranging from 3D imaging to LiDAR. 
    more » « less
  5. Abstract

    Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50% and continuously provide a near-constant focal length overλ = 1200–1650 nm. These unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.

     
    more » « less