- Award ID(s):
- 1640196
- PAR ID:
- 10380459
- Date Published:
- Journal Name:
- CS MANTECH 2022 Digest
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Impurity-induced disordering (IID) in vertical-cavity surface-emitting lasers (VCSELs) has been shown to provide enhanced performance, such as achieving single fundamental-mode operation with higher output powers when compared to conventional VCSELs. This work presents the performance of oxide-confined, λ ~ 850 nm, VCSELs fabricated with varying IID aperture sizes which are characterized for maximum single-fundamental-mode output power. The electrical and optical performance of these devices are shown in comparison to traditional oxide-confined VCSELs and the optimal IID aperture size is experimentally validated. Control of the lateral-to-vertical (L/V) IID aperture profile is then demonstrated through engineering the strain induced by the IID diffusion mask. This extensive control over the IID aperture enables improved, manufacturable, IID VCSEL designs.more » « less
-
Choquette, Kent D. ; Lei, Chun ; Graham, Luke A. (Ed.)A wafer-scale CMOS-compatible process for heterogeneous integration of III-V epitaxial material onto silicon for photonic device fabrication is presented. Transfer of AlGaAs-GaAs Vertical-Cavity Surface-Emitting Laser (VCSEL) epitaxial material onto silicon using a carrier wafer process and metallic bonding is used to form III-V islands which are subsequently processed into VCSELs. The transfer process begins with the bonding of III-V wafer pieces epitaxy-down on a carrier wafer using a temporary bonding material. Following substrate removal, precisely-located islands of material are formed using photolithography and dry etching. These islands are bonded onto a silicon host wafer using a thin-film non-gold metal bonding process and the transfer wafer is removed. Following the bonding of the epitaxial islands onto the silicon wafer, standard processing methods are used to form VCSELs with non-gold contacts. The removal of the GaAs substrate prior to bonding provides an improved thermal pathway which leads to a reduction in wavelength shift with output power under continuous-wave (CW) excitation. Unlike prior work in which fullyfabricated VCSELs are flip-chip bonded to silicon, all photonic device processing takes place after the epitaxial transfer process. The electrical and optical performance of heterogeneously integrated 850nm GaAs VCSELs on silicon is compared to their as-grown counterparts. The demonstrated method creates the potential for the integration of III-V photonic devices with silicon CMOS, including CMOS imaging arrays. Such devices could have use in applications ranging from 3D imaging to LiDAR.more » « less
-
MicroLEDs offer an extraordinary combination of high luminance, high energy efficiency, low cost, and long lifetime. These characteristics are highly desirable in various applications, but their usage has, to date, been primarily focused toward next-generation display technologies. Applications of microLEDs in other technologies, such as projector systems, computational imaging, communication systems, or neural stimulation, have been limited. In non-display applications which use microLEDs as light sources, modifications in key electrical and optical characteristics such as external efficiency, output beam shape, modulation bandwidth, light output power, and emission wavelengths are often needed for optimum performance. A number of advanced fabrication and processing techniques have been used to achieve these electro-optical characteristics in microLEDs. In this article, we review the non-display application areas of the microLEDs, the distinct opto-electrical characteristics required for these applications, and techniques that integrate the optical and electrical components on the microLEDs to improve system-level efficacy and performance.
-
We present a new interposer-level optical network based on direct-modulated lasers such as vertical-cavity surfaceemitting lasers (VCSELs) or transistor lasers (TLs). Our key observation is that, the physics of these lasers is such that they must transmit significantly more power (21×) than is needed by the receiver. We take advantage of this excess optical power to create a new network architecture called Rome, which splits optical signals using passive splitters to allow flexible bandwidth allocation among different transmitter and receiver pairs while imposing minimal power and design costs. Using multi-chip module GPUs (MCM-GPUs) as a case study, we thoroughly evaluate network power and performance, and show that (1) Rome is capable of efficiently scaling up MCM-GPUs with up to 1024 streaming multiprocessors, and (2) Rome outperforms various competing designs in terms of energy efficiency (by up to 4×) and performance (by up to 143%).more » « less
-
Abstract Superconducting cavity electro-optics presents a promising route to coherently convert microwave and optical photons and distribute quantum entanglement between superconducting circuits over long-distance. Strong Pockels nonlinearity and high-performance optical cavity are the prerequisites for high conversion efficiency. Thin-film lithium niobate (TFLN) offers these desired characteristics. Despite significant recent progresses, only unidirectional conversion with efficiencies on the order of 10−5has been realized. In this article, we demonstrate the bidirectional electro-optic conversion in TFLN-superconductor hybrid system, with conversion efficiency improved by more than three orders of magnitude. Our air-clad device architecture boosts the sustainable intracavity pump power at cryogenic temperatures by suppressing the prominent photorefractive effect that limits cryogenic performance of TFLN, and reaches an efficiency of 1.02% (internal efficiency of 15.2%). This work firmly establishes the TFLN-superconductor hybrid EO system as a highly competitive transduction platform for future quantum network applications.