skip to main content


Title: Mechanistic Studies of the Electrocatalytic Carbon–Bromine Cleavage and the Hydrogen Atom Incorporation from 1,1,1,3,3,3-Hexaflouroisopropanol

Electrochemical dehalogenation of polyhalogenated compounds is an inefficient process as the working electrode is passivated by the deposition of short-chain polymers that form during the early stages of electrolysis. Herein, we report the use of 1, 1, 1, 3, 3, 3-hexaflouroisopropanol (HFIP) as an efficient reagent to control C–H formation over the radical association. Debromination of 1,6-dibromohexane was examined in the presence of Ni(II) salen and HFIP as the electrocatalyst and hydrogen atom source, respectively. Electrolysis of 10 mM 1,6-dibromohexane and 2 mM Ni(II) salen in the absence of HFIP yields 50% unreacted 1,6-dibromohexane and ∼40% unaccounted for starting material, whereas electrolysis with 50 mM HFIP affords 65%n-hexane. The mechanism of hydrogen atom incorporation was examined via deuterium incorporation coupled with high-resolution mass spectrometry, and density functional theory (DFT) calculations. Deuterium incorporation analysis revealed that the hydrogen atom originated from the secondary carbon of HFIP. DFT calculations showed that the deprotonation of hydroxyl moiety of HFIP, prior to the hydrogen atom transfer, is a key step for C–H formation. The scope of electrochemical dehalogenation was examined by electrolysis of 10 halogenated compounds. Our results indicate that through the use of HFIP, the formation of short-chain polymers is no longer observed, and monomer formation is the dominant product.

 
more » « less
Award ID(s):
2002158
NSF-PAR ID:
10380488
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
169
Issue:
11
ISSN:
0013-4651
Page Range / eLocation ID:
Article No. 115502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyclic voltammetry and controlled-potential (bulk) electrolysis have been employed to investigate the direct electrochemical reduction of acetochlor (1) at carbon and silver cathodes in dimethylformamide. Voltammograms of1exhibit a single irreversible cathodic peak at both cathode materials. Catalytic properties of silver towards carbon–halogen bond cleavage are evidenced by a positive shift in the reduction of acetochlor as compared to the more inert glassy carbon electrode. Voltammograms in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and comparisons of calculated relative interaction energies between acetochlor, possible intermediates, and deschloroacetochlor in the presence of different proton donors, suggest strong hydrogen-bonding interactions between HFIP and a carbanion intermediate. Addition of HFIP to electrolysis conditions promotes complete reduction at both cathode materials, with formation of deschloroacetochlor in high yields. In deuterium labelling studies, the use of DMF-d7led to no evidence for deuterium atom incorporation. However, when HFIP-OD or D2O were employed as a proton source, substantial amounts of deuterated deschloroacetochlor were observed. A mechanism for the reduction of acetochlor is proposed, in which radical intermediates do not play a significant role in reduction, rather a carbanion intermediate pathway is followed.

     
    more » « less
  2. null (Ed.)
    In order to explore how specific atom-to-atom replacements change the electrostatic potentials on 1,3,4-chalcogenadiazole derivatives, and to deliberately alter the balance between intermolecular interactions, four target molecules were synthesized and characterized. DFT calculations indicated that the atom-to-atom substitution of Br with I, and S with Se enhanced the σ-hole potentials, thus increasing the structure directing ability of halogen bonds and chalcogen bonds as compared to intermolecular hydrogen bonding. The delicate balance between these intermolecular forces was further underlined by the formation of two polymorphs of 5-(4-iodophenyl)-1,3,4-thiadiazol-2-amine; Form I displayed all three interactions while Form II only showed hydrogen and chalcogen bonding. The results emphasize that the deliberate alterations of the electrostatic potential on polarizable atoms can cause specific and deliberate changes to the main synthons and subsequent assemblies in the structures of this family of compounds. 
    more » « less
  3. Abstract

    Paired redox‐neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non‐toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C−C cross‐coupling reactions. Here, we report the electro/Ni dual‐catalyzed redox‐neutral decarboxylative C(sp3)−C(sp2) cross‐coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar−Br bond by a NiI‐bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2‐phenoxy propionic acid, undergo oxidative decarboxylation to form carbon‐based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)−C(sp2) cross‐coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual‐catalyzed cross‐coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)−C(sp2) cross‐coupling and represent a promising method for the construction of the C(sp3)−C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow‐synthesis technology.

     
    more » « less
  4. Abstract

    Paired redox‐neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non‐toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C−C cross‐coupling reactions. Here, we report the electro/Ni dual‐catalyzed redox‐neutral decarboxylative C(sp3)−C(sp2) cross‐coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar−Br bond by a NiI‐bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2‐phenoxy propionic acid, undergo oxidative decarboxylation to form carbon‐based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)−C(sp2) cross‐coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual‐catalyzed cross‐coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)−C(sp2) cross‐coupling and represent a promising method for the construction of the C(sp3)−C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow‐synthesis technology.

     
    more » « less
  5. Abstract

    In this paper, Salen‐Ni basis polyphosphazene microsphere (Salen‐PZN‐Ni), boric acid (BA), and 3‐aminopropyltriethoxysilane (KH‐550) were used as raw materials to prepare a new flame retardant Salen‐PZN‐Ni@BA@KH‐550 by surface modification. The thermal and flame retardant properties of epoxy resin (EP) composites were studied. The introduction of Salen‐PZN‐Ni@BA@KH‐550 refined the thermal stability of EP composites, as well as the amount of carbon residue at 800°C. At 5 wt% of Salen‐PZN‐Ni@BA@KH‐550, the limiting oxygen index (LOI) of EP composites is increased from 25.4% to 30.5% and UL‐94 has been achieved with a V‐1 rating. Meanwhile, the mechanical properties of Salen‐PZN‐Ni@BA@KH‐550/EP composites were also improved. In addition, the good char formation ability of Salen‐PZN‐Ni@BA@KH‐550 caused the reduction of peak heat release rate, total heat release rate, maximum average heat release rate and total smoke generation of the EP composites. All these results indicate that Salen‐PZN‐Ni@BA@KH‐550/EP composites have a wider range of applications.

     
    more » « less