skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A stochastic locally diffusive model with neural network‐based deformations for global sea surface temperature
In this work, we propose a new approach to model large, irregularly distributed spatio‐temporal global data via a locally diffusive stochastic partial differential equation (SPDE). The proposed model assumes a local deformation of the SPDE with non‐linear dependence on the covariates through a neural network. The proposed model can be fit in a computationally efficient manner using a triangulation over the sphere and sparsity of the precision matrix, as shown in an application with a large data set of simulated multi‐decadal monthly sea surface temperature.  more » « less
Award ID(s):
2014166
PAR ID:
10380531
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
11
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess a sustainable access to water resources at urban scale. Mapping a non-stationary, sparse process such as precipitation at very high spatial resolution requires the interpolation of global datasets at the location where ground stations are available with statistical models able to capture complex non-Gaussian global space–time dependence structures. In this work, we propose a new approach based on capturing the spatially varying anisotropy of a latent Gaussian process via a locally deformed stochastic partial differential equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite volume approximation of the SPDE, coupled with integrated nested Laplace approximation ensures feasible Bayesian inference for tens of millions of observations. The simulation studies showcase the improved predictability of the proposed approach against stationary and no-buffer alternatives. The proposed approach is then used to yield high-resolution simulations of daily precipitation across the United States. 
    more » « less
  2. In this Review, we review some recent rigorous results on large N problems in quantum field theory, stochastic quantization, and singular stochastic partial differential equations (SPDEs) and their mean field limit problems. In particular, we discuss the O( N) linear sigma model on a two- and three-dimensional torus. The stochastic quantization procedure leads to a coupled system of N interacting Φ 4 equations. In d = 2, we show uniformity in N bounds for the dynamics and convergence to a mean-field singular SPDE. For large enough mass or small enough coupling, the invariant measures [i.e., the O( N) linear sigma model] converge to the massive Gaussian free field, the unique invariant measure of the mean-field dynamics, in a Wasserstein distance. We also obtain tightness for certain O( N) invariant observables as random fields in suitable Besov spaces as N → ∞, along with exact descriptions of the limiting correlations. In d = 3, the estimates become more involved since the equation is more singular. We discuss in this case how to prove convergence to the massive Gaussian free field. The proofs of these results build on the recent progress of singular SPDE theory and combine many new techniques, such as uniformity in N estimates and dynamical mean field theory. These are based on joint papers with Scott Smith, Rongchan Zhu, and Xiangchan Zhu. 
    more » « less
  3. Abstract Theoretical analysis of epidemic dynamics has attracted significant attention in the aftermath of the COVID–19 pandemic. In this article, we study dynamic instabilities in a spatiotemporal compartmental epidemic model represented by a stochastic system of coupled partial differential equations (SPDE). Saturation effects in infection spread–anchored in physical considerations–lead to strong nonlinearities in the SPDE. Our goal is to study the onset of dynamic, Turing–type instabilities, and the concomitant emergence of steady–state patterns under the interplay between three critical model parameters–the saturation parameter, the noise intensity, and the transmission rate. Employing a second–order perturbation analysis to investigate stability, we uncover both diffusion–driven and noise–induced instabilities and corresponding self–organized distinct patterns of infection spread in the steady state. We also analyze the effects of the saturation parameter and the transmission rate on the instabilities and the pattern formation. In summary, our results indicate that the nuanced interplay between the three parameters considered has a profound effect on the emergence of dynamical instabilities and therefore on pattern formation in the steady state. Moreover, due to the central role played by the Turing phenomenon in pattern formation in a variety of biological dynamic systems, the results are expected to have broader significance beyond epidemic dynamics. 
    more » « less
  4. SUMMARY The spatio-temporal properties of seismicity give us incisive insight into the stress state evolution and fault structures of the crust. Empirical models based on self-exciting point processes continue to provide an important tool for analysing seismicity, given the epistemic uncertainty associated with physical models. In particular, the epidemic-type aftershock sequence (ETAS) model acts as a reference model for studying seismicity catalogues. The traditional ETAS model uses simple parametric definitions for the background rate of triggering-independent seismicity. This reduces the effectiveness of the basic ETAS model in modelling the temporally complex seismicity patterns seen in seismic swarms that are dominated by aseismic tectonic processes such as fluid injection rather than aftershock triggering. In order to robustly capture time-varying seismicity rates, we introduce a deep Gaussian process (GP) formulation for the background rate as an extension to ETAS. GPs are a robust non-parametric model for function spaces with covariance structure. By conditioning the length-scale structure of a GP with another GP, we have a deep-GP: a probabilistic, hierarchical model that automatically tunes its structure to match data constraints. We show how the deep-GP-ETAS model can be efficiently sampled by making use of a Metropolis-within-Gibbs scheme, taking advantage of the branching process formulation of ETAS and a stochastic partial differential equation (SPDE) approximation for Matérn GPs. We illustrate our method using synthetic examples, and show that the deep-GP-ETAS model successfully captures multiscale temporal behaviour in the background forcing rate of seismicity. We then apply the results to two real-data catalogues: the Ridgecrest, CA 2019 July 5 Mw 7.1 event catalogue, showing that deep-GP-ETAS can successfully characterize a classical aftershock sequence; and the 2016–2019 Cahuilla, CA earthquake swarm, which shows two distinct phases of aseismic forcing concordant with a fluid injection-driven initial sequence, arrest of the fluid along a physical barrier and release following the largest Mw 4.4 event of the sequence. 
    more » « less
  5. Mobility-as-a-service systems are becoming increasingly important in the context of smart cities, with challenges arising for public agencies to obtain data from private operators. Only limited mobility data are typically provided to city agencies, which are not enough to support their decision-making. This study proposed an entropy-maximizing gravity model to predict origin–destination patterns of both passenger and mobility fleets with only partial operator data. An iterative balancing algorithm was proposed to efficiently reach the entropy maximization state. With different trip length distributions data available, two calibration applications were discussed and validated with a small-scale numerical example. Tests were also conducted to verify the applicability of the proposed model and algorithm to large-scale real data from Chicago transportation network companies. Both shared-ride and single-ride trips were forecast based on the calibrated model, and the prediction of single-ride has a higher level of accuracy. The proposed solution and calibration algorithms are also efficient to handle large scenarios. Additional analyses were conducted for north and south sub-areas of Chicago and revealed different travel patterns in these two sub-areas. 
    more » « less