We propose a sampling method based on an ensemble approximation of second order Langevin dynamics. The log target density is appended with a quadratic term in an auxiliary momentum variable and damped-driven Hamiltonian dynamics introduced; the resulting stochastic differential equation is invariant to the Gibbs measure, with marginal on the position coordinates given by the target. A preconditioner based on covariance under the law of position coordinates under the dynamics does not change this invariance property, and is introduced to accelerate convergence to the Gibbs measure. The resulting mean-field dynamics may be approximated by an ensemble method; this results in a gradient-free and affine-invariant stochastic dynamical system with desirable provably uniform convergence properties across the class of all Gaussian targets. Numerical results demonstrate the potential of the method as the basis for a numerical sampler in Bayesian inverse problems, beyond the Gaussian setting.
more »
« less
A stochastic PDE approach to large N problems in quantum field theory: A survey
In this Review, we review some recent rigorous results on large N problems in quantum field theory, stochastic quantization, and singular stochastic partial differential equations (SPDEs) and their mean field limit problems. In particular, we discuss the O( N) linear sigma model on a two- and three-dimensional torus. The stochastic quantization procedure leads to a coupled system of N interacting Φ 4 equations. In d = 2, we show uniformity in N bounds for the dynamics and convergence to a mean-field singular SPDE. For large enough mass or small enough coupling, the invariant measures [i.e., the O( N) linear sigma model] converge to the massive Gaussian free field, the unique invariant measure of the mean-field dynamics, in a Wasserstein distance. We also obtain tightness for certain O( N) invariant observables as random fields in suitable Besov spaces as N → ∞, along with exact descriptions of the limiting correlations. In d = 3, the estimates become more involved since the equation is more singular. We discuss in this case how to prove convergence to the massive Gaussian free field. The proofs of these results build on the recent progress of singular SPDE theory and combine many new techniques, such as uniformity in N estimates and dynamical mean field theory. These are based on joint papers with Scott Smith, Rongchan Zhu, and Xiangchan Zhu.
more »
« less
- PAR ID:
- 10414483
- Date Published:
- Journal Name:
- Journal of Mathematical Physics
- Volume:
- 63
- Issue:
- 8
- ISSN:
- 0022-2488
- Page Range / eLocation ID:
- 081103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract The zigzag model is a relativistic integrable N -body system describing the leading high-energy semiclassical dynamics on the worldsheet of long confining strings in massive adjoint two-dimensional QCD. We discuss quantization of this model. We demonstrate that to achieve a consistent quantization of the model it is necessary to account for the non-trivial geometry of phase space. The resulting Poincaré invariant integrable quantum theory is a close cousin of $$ T\overline{T} $$ T T ¯ deformed models.more » « less
-
Buttazzo, G.; Casas, E.; de Teresa, L.; Glowinski, R.; Leugering, G.; Trélat, E.; Zhang, X. (Ed.)In our present article, we follow our way of developing mean field type control theory in our earlier works [Bensoussanet al., Mean Field Games and Mean Field Type Control Theory.Springer, New York (2013)], by first introducing the Bellman and then master equations, the system of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations, and then tackling them by looking for the semi-explicit solution for the linear quadratic case, especially with an arbitrary initial distribution; such a problem, being left open for long, has not been specifically dealt with in the earlier literature, such as Bensoussan [Stochastic Control of Partially Observable Systems. Cambridge University Press, (1992)] and Nisio [Stochastic control theory: Dynamic programming principle. Springer (2014)], which only tackled the linear quadratic setting with Gaussian initial distributions. Thanks to the effective mean-field theory, we propose a solution to this long standing problem of the general non-Gaussian case. Besides, our problem considered here can be reduced to the model in Bandiniet al.[Stochastic Process. Appl.129(2019) 674–711], which is fundamentally different from our present proposed framework.more » « less
-
We provide improved differentially private algorithms for identity testing of high-dimensional distributions. Specifically, for d-dimensional Gaussian distributions with known covariance Σ, we can test whether the distribution comes from N(μ∗,Σ) for some fixed μ∗ or from some N(μ,Σ) with total variation distance at least α from N(μ∗,Σ) with (ε,0)-differential privacy, using only O~(d1/2α2+d1/3α4/3⋅ε2/3+1α⋅ε) samples if the algorithm is allowed to be computationally inefficient, and only O~(d1/2α2+d1/4α⋅ε) samples for a computationally efficient algorithm. We also provide a matching lower bound showing that our computationally inefficient algorithm has optimal sample complexity. We also extend our algorithms to various related problems, including mean testing of Gaussians with bounded but unknown covariance, uniformity testing of product distributions over {−1,1}d, and tolerant testing. Our results improve over the previous best work of Canonne et al.~\cite{CanonneKMUZ20} for both computationally efficient and inefficient algorithms, and even our computationally efficient algorithm matches the optimal \emph{non-private} sample complexity of O(d√α2) in many standard parameter settings. In addition, our results show that, surprisingly, private identity testing of d-dimensional Gaussians can be done with fewer samples than private identity testing of discrete distributions over a domain of size d \cite{AcharyaSZ18}, which refutes a conjectured lower bound of~\cite{CanonneKMUZ20}.more » « less
-
Freidlin‐Wentzell theory of large deviations can be used to compute the likelihood of extreme or rare events in stochastic dynamical systems via the solution of an optimization problem. The approach gives exponential estimates that often need to be refined via calculation of a prefactor. Here it is shown how to perform these computations in practice. Specifically, sharp asymptotic estimates are derived for expectations, probabilities, and mean first passage times in a form that is geared towards numerical purposes: they require solving well‐posed matrix Riccati equations involving the minimizer of the Freidlin‐Wentzell action as input, either forward or backward in time with appropriate initial or final conditions tailored to the estimate at hand. The usefulness of our approach is illustrated on several examples. In particular, invariant measure probabilities and mean first passage times are calculated in models involving stochastic partial differential equations of reaction‐advection‐diffusion type.more » « less
An official website of the United States government

