Topological insulators (TIs) have attracted significant attention in photonics and acoustics due to their unique physical properties and promising applications. Electronics has recently emerged as an exciting arena to study various topological phenomena because of its advantages in building complex topological structures. Here, we explore TIs on an integrated circuit (IC) platform with a standard complementary metal-oxide-semiconductor technology. Based on the Su–Schrieffer–Heeger model, we design a fully integrated topological circuit chain using multiple capacitively-coupled inductor–capacitor resonators. We perform comprehensive post-layout simulations on its physical layout to observe and evaluate the salient topological features. Our results demonstrate the existence of the topological edge state and the remarkable robustness of the edge state against various defects. Our work shows the feasibility and promise of studying TIs with IC technology, paving the way for future explorations of large-scale topological electronics on the scalable IC platform.
more » « less- Award ID(s):
- 1942900
- PAR ID:
- 10380538
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We propose an electroacoustic transistor enabled by reconfigurable topological insulators (TIs). The underlying structure of the device is a hexagonal lattice with a unit cell consisting of piezoelectric disks bonded to an aluminum substrate. First, we study the dispersion of flexural waves in the reconfigurable TI to identify Dirac cones in the band structure of a unit cell possessing C6v-symmetry. A topological bandgap can be opened by breaking inversion symmetry in the unit cell. This is achieved by altering the elastic response of one of the affixed piezoelectric disks using a negative impedance shunt circuit. Next, we analyze various topological states formed by interfacing mirror-symmetric unit cells. Sublattices with interface states are then combined to construct a transistor supercell which hosts at least two topologically protected channels for wave propagation. The amplitude of an incoming acoustic signal propagating in one of the topological channels, referred to as the ‘Gate’, is used to switch on or off a second topological channel between a wave source and receiver, mimicking the behavior of a field effect transistor in electronics. We employ finite element analysis to study the harmonic response of the transistor structure demonstrating the OFF and ON states of the device. Further, we present a mock-up of an electrical circuit which enables the switching of the topological channel between a wave source and receiver. The design of the proposed wave-based transistor promises the advantage of topological protection and may find applications in wearable devices, edge computing, and sensing in harsh environments.more » « less
-
Reverse engineering (RE) in Integrated Circuits (IC) is a process in which one will attempt to extract the internals of an IC, extract the circuit structure, and determine the gate-level information of an IC. In general, the RE process can be done for validation as well as Intellectual Property (IP) stealing intentions. In addition, RE also facilitates different illicit activities such as the insertion of hardware Trojan, pirating, or counterfeiting a design, or developing an attack. In this work, we propose an approach to introduce cognitive perturbations, with the aid of adversarial machine learning, to the IC layout that could prevent the RE process from succeeding. We first construct a layer-by-layer image dataset of 45 nm predictive technology. With this dataset, we propose a conventional neural network model called RecoG-Net to recognize the logic gates, which is the first step in RE. RecoG-Net is successful in recognizing the gates with more than 99.7% accuracy. Our thwarting approach utilizes the concept of adversarial attack generation algorithms to generate perturbation. Unlike traditional adversarial attacks in machine learning, the perturbation generation needs to be highly constrained to meet the fab rules such as Design Rule Checking (DRC) Layout vs. Schematic (LVS) checks. Hence, we propose CAPTIVE as a constrained perturbation generation satisfying the DRC. The experiments show that the accuracy of reverse engineering using machine learning techniques can decrease from 100% to approximately 30% based on the adversary generator.
-
Abstract Harnessing parity–time symmetry with balanced gain and loss profiles has created a variety of opportunities in electronics from wireless energy transfer to telemetry sensing and topological defect engineering. However, existing implementations often employ ad hoc approaches at low operating frequencies and are unable to accommodate large-scale integration. Here we report a fully integrated realization of parity–time symmetry in a standard complementary metal–oxide–semiconductor process technology. Our work demonstrates salient parity–time symmetry features such as phase transition as well as the ability to manipulate broadband microwave generation and propagation beyond the limitations encountered by existing schemes. The system shows 2.1 times the bandwidth and 30% noise reduction compared to conventional microwave generation in the oscillatory mode, and displays large non-reciprocal microwave transport from 2.75 to 3.10 GHz in the non-oscillatory mode due to enhanced nonlinearities. This approach could enrich integrated circuit design methodology beyond well-established performance limits and enable the use of scalable integrated circuit technology to study topological effects in high-dimensional non-Hermitian systems.
-
The design of analog computing systems requires significant human resources and domain expertise due to the lack of automation tools to enable these highly energy-efficient, high-performance computing nodes. This work presents the first automated tool flow from a high-level representation to a reconfigurable physical device. This tool begins with a high-level algorithmic description, utilizing either our custom Python framework or the XCOS GUI, to compile and optimize computations for integration into an Integrated Circuit (IC) design or a Field Programmable Analog Array (FPAA). An energy-efficient embedded speech classifier benchmark illustrates the tool demonstration, automatically generating GDSII layout or FPAA switch list targeting.
-
Abstract Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for the next‐generation human‐centered bio‐integrated electronics, wireless sensing capability is a desirable feature. However, state‐of‐the‐art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission. This study reports a battery‐free device technology based on a “two‐part” resonance circuit model with modularized, physically separated, and detachable functional units for magnetic coupling and biosensing. The resulting platform combines advantages of electronics and microfluidics with low cost, minimized form factors, and improved performance stability. Demonstration of a detachable sweat patch capable of simultaneous recording of cortisol concentration, pH value, and temperature highlights the potential of the “two‐part” circuit for advanced, transformative biosensing. The resulting wireless sensors provide a new engineering solution to monitoring biosignals through intimate and seamless integration with skin surfaces.