skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Allocation of COVID‐19 testing budget on a commute network of counties
The screening testing is an effective tool to control the early spread of an infectious disease such as COVID‐19. When the total testing capacity is limited, we aim to optimally allocate testing resources amongncounties. We build a (weighted) commute network on counties, with the weight between two counties a decreasing function of their traffic distance. We introduce a network‐based disease model, in which the number of newly confirmed cases of each county depends on the numbers of hidden cases of all counties on the network. Our proposed testing allocation strategy first uses historical data to learn model parameters and then decides the testing rates for all counties by solving an optimization problem. We apply the method on the commute networks of Massachusetts, USA and Hubei, China, and observe its advantages over testing allocation strategies that ignore the network structure. Our approach can also be extended to study the vaccine allocation problem.  more » « less
Award ID(s):
1943902
PAR ID:
10380540
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
11
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the pandemic of COVID-19 began in January 2020, the world has witnessed drastic social-economic changes. To harness the virus spread, several studies have been done to study contributing factors that are pertinent to COVID-19 transmission risks. However, little has been done to investigate how human activities on the spatial network are correlated to the virus transmission and spread. This paper performs a statistical analysis to examine interrelationships between spatial network characteristics and cumulative cases of COVID-19 in US counties. Specifically, both county-level transportation profiles (e.g., the total number of commute workers, route miles of freight railroad) and road network characteristics of US counties are considered. Then, the lasso regression model is utilized to identify a sparse set of significant variables that are sensitive to the response variable of COVID-19 cases. Finally, the fixed-effect model is built to capture the relationship between the selected set of predictors and the response variable. This work helps identify and determine salient features from spatial network characteristics and transportation profiles, thereby improving the understanding of COVID-19 spread dynamics. These significant variables can also be utilized to develop simulation models for the prediction of real-time positions of virus spread and the optimization of intervention strategies. 
    more » « less
  2. Abstract The early detection of the coronavirus disease 2019 (COVID-19) outbreak is important to save people’s lives and restart the economy quickly and safely. People’s social behavior, reflected in their mobility data, plays a major role in spreading the disease. Therefore, we used the daily mobility data aggregated at the county level beside COVID-19 statistics and demographic information for short-term forecasting of COVID-19 outbreaks in the United States. The daily data are fed to a deep learning model based on Long Short-Term Memory (LSTM) to predict the accumulated number of COVID-19 cases in the next two weeks. A significant average correlation was achieved ( r =0.83 ( p = 0.005 )) between the model predicted and actual accumulated cases in the interval from August 1, 2020 until January 22, 2021. The model predictions had r > 0.7 for 87% of the counties across the United States. A lower correlation was reported for the counties with total cases of <1000 during the test interval. The average mean absolute error (MAE) was 605.4 and decreased with a decrease in the total number of cases during the testing interval. The model was able to capture the effect of government responses on COVID-19 cases. Also, it was able to capture the effect of age demographics on the COVID-19 spread. It showed that the average daily cases decreased with a decrease in the retiree percentage and increased with an increase in the young percentage. Lessons learned from this study not only can help with managing the COVID-19 pandemic but also can help with early and effective management of possible future pandemics. The code used for this study was made publicly available on https://github.com/Murtadha44/covid-19-spread-risk. 
    more » « less
  3. Abstract The 2020 Atlantic hurricane season was extremely active and included, as of early November, six hurricanes that made landfall in the United States during the global coronavirus disease 2019 (COVID‐19) pandemic. Such an event would necessitate a large‐scale evacuation, with implications for the trajectory of the pandemic. Here we model how a hypothetical hurricane evacuation from four counties in southeast Florida would affect COVID‐19 case levels. We find that hurricane evacuation increases the total number of COVID‐19 cases in both origin and destination locations; however, if transmission rates in destination counties can be kept from rising during evacuation, excess evacuation‐induced case numbers can be minimized by directing evacuees to counties experiencing lower COVID‐19 transmission rates. Ultimately, the number of excess COVID‐19 cases produced by the evacuation depends on the ability of destination counties to meet evacuee needs while minimizing virus exposure through public health directives. These results are relevant to disease transmission during evacuations stemming from additional climate‐related hazards such as wildfires and floods. 
    more » « less
  4. null (Ed.)
    The COVID-19 pandemic severely changed the way of life in the United States (US). From early scattered regional outbreaks to current country-wide spread, and from rural areas to highly populated cities, the contagion exhibits diverse patterns at various timescales and locations. We thus conduct a graph frequency analysis to inves- tigate the spread patterns of COVID-19 in different US counties. The commute flows between all 3142 US counties were used to construct a graph capturing the population mobility. The numbers of daily confirmed COVID-19 cases per county were collected and represented as graph signals, which were then mapped into the frequency domain via the graph Fourier transform. The concept of graph frequency in Graph Signal Processing (GSP) enables the decomposition of graph signals (i.e., daily confirmed cases) into modes with smooth or rapid variations with respect to the underlying mobility graph. These different modes of variability are shown to relate to COVID-19 spread patterns within and across counties. Changes in the nature of spread within geographical regions are also revealed by graph frequency analysis at finer temporal scales. Overall, our GSP-based approach leverages case count and mobility data to unveil spatio-temporal contagion patterns of COVID-19 incidence for each US county. Results here support the promising prospect of using GSP tools for epidemiology knowledge discovery on graphs. 
    more » « less
  5. Abstract BackgroundThe development of public health policy is inextricably linked with governance structure. In our increasingly globalized world, human migration and infectious diseases often span multiple administrative jurisdictions that might have different systems of government and divergent management objectives. However, few studies have considered how the allocation of regulatory authority among jurisdictions can affect disease management outcomes. MethodsHere we evaluate the relative merits of decentralized and centralized management by developing and numerically analyzing a two-jurisdictionSIRSmodel that explicitly incorporates migration. In our model, managers choose between vaccination, isolation, medication, border closure, and a travel ban on infected individuals while aiming to minimize either the number of cases or the number of deaths. ResultsWe consider a variety of scenarios and show how optimal strategies differ for decentralized and centralized management levels. We demonstrate that policies formed in the best interest of individual jurisdictions may not achieve global objectives, and identify situations where locally applied interventions can lead to an overall increase in the numbers of cases and deaths. ConclusionsOur approach underscores the importance of tailoring disease management plans to existing regulatory structures as part of an evidence-based decision framework. Most importantly, we demonstrate that there needs to be a greater consideration of the degree to which governance structure impacts disease outcomes. 
    more » « less