skip to main content

Title: Toward Constraining Sources of Lithogenic Metals in the Northern Gulf of Mexico
Abstract

North African dust is known to be deposited in the Gulf of Mexico, but its deposition rate and associated supply of lithogenic dissolved metals, such as the abiotic metal thorium or the micronutrient metal iron, have not been well‐quantified.232Th is an isotope with similar sources as iron and its input can be quantified using radiogenic230Th. By comparing dissolved232Th fluxes at three sites in the northern Gulf of Mexico with upwind sites in the North Atlantic, we place an upper bound on North African dust contributions to232Th and Fe in the Gulf of Mexico, which is about 30% of the total input. Precision on this bound is hindered by uncertainty in the relative rates of dust deposition in the North Atlantic and the northern Gulf of Mexico. Based on available radium data, shelf sources, including rivers, submarine groundwater discharge, and benthic sedimentary releases are likely as important if not more important than dust in the budget of lithogenic metals in the Gulf of Mexico. In other words, it is likely there is no one dominant source of Th and Fe in the Gulf of Mexico. Finally, our estimated Fe input in the northern Gulf of Mexico implies an Fe residence more » time of less than 6 months, similar to that in the North Atlantic despite significantly higher supply rates in the Gulf of Mexico.

« less
Authors:
 ;  ;  
Award ID(s):
1737023
Publication Date:
NSF-PAR ID:
10380596
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
127
Issue:
4
ISSN:
2169-9275
Publisher:
DOI PREFIX: 10.1029
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    One of the primary sources of micronutrients to the sea surface in remote ocean regions is the deposition of atmospheric dust. Geographic patterns in biogeochemical processes such as primary production and nitrogen fixation that require micronutrients like iron (Fe) are modulated in part by the spatial distribution of dust supply. Global models of dust deposition rates are poorly calibrated in the open ocean, owing to the difficulty of determining dust fluxes in sparsely sampled regions. We present new estimates of dust and Fe input rates from measurements of dissolved and particulate thorium isotopes230Th and232Th on theFS SonneSO245 section (GEOTRACES process study GPpr09) in the South Pacific. We first discuss high‐resolution upper water column profiles of Th isotopes and the implications for the systematics of dust flux reconstructions from seawater Th measurements. We find dust fluxes in the center of the highly oligotrophic South Pacific Gyre that are the lowest of any mean annual dust input rates measured in the global oceans, but that are 1–2 orders of magnitude higher than those estimated by global dust models. We also determine dust‐borne Fe fluxes and reassess the importance of individual Fe sources to the surface South Pacific Gyre, finding that dustmore »dissolution, not vertical or lateral diffusion, is the primary Fe source. Finally, we combine our estimates of Fe flux in dust with previously published cellular and enzymatic quotas to determine theoretical upper limits on annual average nitrogen fixation rates for a given Fe deposition rate.

    « less
  2. Abstract

    Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th;210Pb:210Po;228Ra:228Th; and234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionationmore »effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.

    « less
  3. Abstract

    Re‐examination of previously published dissolved iron time‐series data from Ocean Station Papa in the central Gulf of Alaska (GoA) reveals 33%–70% increases in the dissolved iron inventories occurring between September and February of successive years, implying a source of Fe to this region during autumn or early winter. Because I can virtually rule out many possible iron sources at this time of year, I suggest Alaskan glacial dust is the likely iron source. Large plumes of such dust are known to be generated regularly in the autumn by anomalous offshore winds and channeled through mountain gaps, simultaneously from several locations spanning ∼1,000 km of the northern Gulf of Alaska coastline. Large dust flux events occur when below‐freezing, low‐humidity air temperatures persist for many days during the autumn. I suggest that existing state‐of‐the‐art global dust models fail to reproduce this Alaskan dust flux because the model spatial resolution is too coarse to resolve the high winds through the narrow mountain gaps that generate the dust. Future work that could help to confirm this Fe source to the central GoA includes time‐series profiles of iron concentrations, and ancillary information from sensor‐equipped profiling floats. If this mechanism of Fe supply to the centralmore »GoA were confirmed, it would imply this Alaskan dust is transported ≥1,100 km from the coast, more than twice as far as has been visually documented from satellite observations.

    « less
  4. Abstract

    The flux of terrestrial material from the continents to the oceans links the lithosphere, hydrosphere, and biosphere through physical and biogeochemical processes, with important implications for Earth's climate. Quantitative estimates of terrigenous fluxes from sources such as rivers, aeolian dust, and resuspended shelf sediments are required to understand how the processes delivering terrigenous material respond to and are influenced by climate. We compile thorium‐230 normalized232Th flux records in the tropical Atlantic to provide an improved understanding of aeolian fluxes since the Last Glacial Maximum (LGM). By identifying and isolating sites dominated by aeolian terrigenous inputs, we show that there was a persistent meridional gradient in dust fluxes in the eastern equatorial Atlantic at the LGM, arguing against a large southward shift of the intertropical convergence zone during LGM boreal winter. The ratio of LGM to late‐Holocene232Th fluxes highlights a meridional difference in the magnitude of variations in dust deposition, with sites <10°N showing larger changes over time. This supports an interpretation of increased trade wind strength at the LGM, potentially combined with differential changes in soil moisture and reductions in higher altitude summer winds. Our results also highlight the persistent importance of continental margins as sources of high terrigenousmore »flux to the open ocean. This is especially evident in the western tropical Atlantic, where study locations reveal the primary influence of the South American continent up to >700 km away, characterized by232Th fluxes approximately twice as large as aeolian‐dominated sites in the east.

    « less
  5. Abstract. Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observedmore »below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.

    « less