skip to main content


Title: Instabilities in the Bottom Boundary Layer Reduce Boundary Layer Arrest and Stir Boundary Layer Water Into the Stratified Interior
Abstract

An along‐isobath current in stratified waters leads to a bottom boundary layer. In models with no alongshore variation, cross‐isobath density transport in this bottom boundary layer reduce the velocity in the bottom boundary layer via thermal wind, and thus the bottom friction experienced by the current above the boundary layer—this is bottom‐boundary‐layer arrest. If, however, alongshore variation of the flow is allowed, the bottom boundary layer is baroclinically unstable. We show with high resolution numerical models that these instabilities reduce this arrest and allow bottom friction to decelerate the flow above the bottom boundary layer when the flow is in the Kelvin wave direction (so that the bottom Ekman transport is downwelling). Both the arrest of the bottom boundary layer and the release from this arrest are asymmetric; the friction experienced by flows in the direction of Kelvin‐wave propagation (downwave) is much greater than flows in the opposite direction. The strength of the near bottom currents, and thus the magnitude of bottom friction, is found to be governed by the destruction of potential vorticity near the bottom balanced by the offshore along‐isopycnal transport of this anomalous potential vorticity. A simple model of this process is created and used to quantify the magnitude of this effect and the resulting reduction of arrest of the bottom boundary layer.

 
more » « less
NSF-PAR ID:
10380603
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
127
Issue:
4
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glacial troughs are flat‐bottomed, steep‐sided submarine valleys that incise the shelf and significantly alter coastal circulation. We examine how these features drive exchange between the shelf and the slope in the barotropic and linear limits. When the alongshore flow is in the Kelvin‐wave (downwave/downwelling favorable) direction, the troughs move transport from the shelf upwave of the trough to the slope downwave of the trough, diminishing wind‐driven alongshore transport on the shelf downwave of the trough. Conversely, when the alongshore flow is against the Kelvin wave direction (upwave/upwelling favorable), the troughs move transport from the slope downwave of the trough to the shelf upwave of the trough. These cross‐shelf flows are driven by the acceleration and curvature of the flows induced by the narrowing and turning isobaths around the trough, and the bottom friction experienced by these accelerated flows. These dynamics are quantified by examining the along‐isobath evolution of potential vorticity in the model's limits.

     
    more » « less
  2. Abstract Concentrated poleward flows along eastern boundaries between 2- and 4-km depth in the southeast Pacific, Atlantic, and Indian Oceans have been observed, and appear in data assimilation products and regional model simulations at sufficiently high horizontal resolution, but their dynamics are still not well understood. We study the local dynamics of these deep eastern boundary currents (DEBCs) using idealized GCM simulations, and we use a conceptual vorticity model for the DEBCs to gain additional insights into the dynamics. Over most of the zonal width of the DEBCs, the vorticity balance is between meridional advection of planetary vorticity and vortex stretching, which is an interior-like vorticity balance. Over a thinner layer very close to the eastern boundary, a balance between vorticity tendencies due to friction and stretching that rapidly decay away from the boundary is found. Over the part of the DEBC that is governed by an interior-like vorticity balance, vertical stretching is driven by both the topography and temperature diffusion, while in the thinner boundary layer, it is driven instead by parameterized horizontal temperature mixing. The topographic driving acts via a cross-isobath flow that leads to stretching and thus to vorticity forcing for the concentrated DEBCs. 
    more » « less
  3. Abstract

    A three-dimensional inertial model that conserves quasigeostrophic potential vorticity is proposed for wind-driven coastal upwelling along western boundaries. The dominant response to upwelling favorable winds is a surface-intensified baroclinic meridional boundary current with a subsurface countercurrent. The width of the current is not the baroclinic deformation radius but instead scales with the inertial boundary layer thickness while the depth scales as the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. Thus, the boundary current scales depend on the stratification, wind stress, Coriolis parameter, and its meridional variation. In contrast to two-dimensional wind-driven coastal upwelling, the source waters that feed the Ekman upwelling are provided over the depth scale of this baroclinic current through a combination of onshore barotropic flow and from alongshore in the narrow boundary current. Topography forces an additional current whose characteristics depend on the topographic slope and width. For topography wider than the inertial boundary layer thickness the current is bottom intensified, while for narrow topography the current is wave-like in the vertical and trapped over the topography within the inertial boundary layer. An idealized primitive equation numerical model produces a similar baroclinic boundary current whose vertical length scale agrees with the theoretical scaling for both upwelling and downwelling favorable winds.

     
    more » « less
  4. Abstract Topographic form stress (TFS) plays a central role in constraining the transport of the Antarctic Circumpolar Current (ACC), and thus the rate of exchange between the major ocean basins. Topographic form stress generation in the ACC has been linked to the formation of standing Rossby waves, which occur because the current is retrograde (opposing the direction of Rossby wave propagation). However, it is unclear whether TFS similarly retards current systems that are prograde (in the direction of Rossby wave propagation), which cannot arrest Rossby waves. An isopycnal model is used to investigate the momentum balance of wind-driven prograde and retrograde flows in a zonal channel, with bathymetry consisting of either a single ridge or a continental shelf and slope with a meridional excursion. Consistent with previous studies, retrograde flows are almost entirely impeded by TFS, except in the limit of flat bathymetry, whereas prograde flows are typically impeded by a combination of TFS and bottom friction. A barotropic theory for standing waves shows that bottom friction serves to shift the phase of the standing wave’s pressure field from that of the bathymetry, which is necessary to produce TFS. The mechanism is the same in prograde and retrograde flows, but is most efficient when the mean flow arrests a Rossby wave with a wavelength comparable to that of the bathymetry. The asymmetry between prograde and retrograde momentum balances implies that prograde current systems may be more sensitive to changes in wind forcing, for example associated with climate shifts. 
    more » « less
  5. In the coastal ocean, interactions of waves and currents with large roughness elements, similar in size to wave orbital excursions, generate drag and dissipate energy. These boundary layer dynamics differ significantly from well-studied small-scale roughness. To address this problem, we derived spatially and phase-averaged momentum equations for combined wave–current flows over rough bottoms, including the canopy layer containing obstacles. These equations were decomposed into steady and oscillatory parts to investigate the effects of waves on currents, and currents on waves. We applied this framework to analyse large-eddy simulations of combined oscillatory and steady flows over hemisphere arrays (diameter $D$ ), in which current ( $U_c$ ), wave velocity ( $U_w$ ) and period ( $T$ ) were varied. In the steady momentum budget, waves increase drag on the current, and this is balanced by the total stress at the canopy top. Dispersive stresses from oscillatory flow around obstacles are increasingly important as $U_w/U_c$ increases. In the oscillatory momentum budget, acceleration in the canopy is balanced by pressure gradient, added-mass and form drag forces; stress gradients are small compared to other terms. Form drag is increasingly important as the Keulegan–Carpenter number $KC=U_wT/D$ and $U_c/U_w$ increase. Decomposing the drag term illustrates that a quadratic relationship predicts the observed dependences of steady and oscillatory drag on $U_c/U_w$ and $KC$ . For large roughness elements, bottom friction is well represented by a friction factor ( $f_w$ ) defined using combined wave and current velocities in the canopy layer, which is proportional to drag coefficient and frontal area per unit plan area, and increases with $KC$ and $U_c/U_w$ . 
    more » « less