skip to main content


Title: Boundary layer dynamics and bottom friction in combined wave–current flows over large roughness elements
In the coastal ocean, interactions of waves and currents with large roughness elements, similar in size to wave orbital excursions, generate drag and dissipate energy. These boundary layer dynamics differ significantly from well-studied small-scale roughness. To address this problem, we derived spatially and phase-averaged momentum equations for combined wave–current flows over rough bottoms, including the canopy layer containing obstacles. These equations were decomposed into steady and oscillatory parts to investigate the effects of waves on currents, and currents on waves. We applied this framework to analyse large-eddy simulations of combined oscillatory and steady flows over hemisphere arrays (diameter $D$ ), in which current ( $U_c$ ), wave velocity ( $U_w$ ) and period ( $T$ ) were varied. In the steady momentum budget, waves increase drag on the current, and this is balanced by the total stress at the canopy top. Dispersive stresses from oscillatory flow around obstacles are increasingly important as $U_w/U_c$ increases. In the oscillatory momentum budget, acceleration in the canopy is balanced by pressure gradient, added-mass and form drag forces; stress gradients are small compared to other terms. Form drag is increasingly important as the Keulegan–Carpenter number $KC=U_wT/D$ and $U_c/U_w$ increase. Decomposing the drag term illustrates that a quadratic relationship predicts the observed dependences of steady and oscillatory drag on $U_c/U_w$ and $KC$ . For large roughness elements, bottom friction is well represented by a friction factor ( $f_w$ ) defined using combined wave and current velocities in the canopy layer, which is proportional to drag coefficient and frontal area per unit plan area, and increases with $KC$ and $U_c/U_w$ .  more » « less
Award ID(s):
2123709 1435530 2123707 2123708
NSF-PAR ID:
10344679
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
931
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The coupled dynamics of turbulent airflow and a spectrum of waves are known to modify air–sea momentum and scalar fluxes. Waves traveling at oblique angles to the wind are common in the open ocean, and their effects may be especially relevant when constraining fluxes in storm and tropical cyclone conditions. In this study, we employ large-eddy simulation for airflow over steep, strongly forced waves following and opposing oblique wind to elucidate its impacts on the wind speed magnitude and direction, drag coefficient, and wave growth/decay rate. We find that oblique wind maintains a signature of airflow separation while introducing a cross-wave component strongly modified by the waves. The directions of mean wind speed and mean wind shear vary significantly with height and are misaligned from the wind stress direction, particularly toward the surface. As the oblique angle increases, the wave form drag remains positive, but the wave impact on the equivalent surface roughness (drag coefficient) rapidly decreases and becomes negative at large angles. Our findings have significant implications for how the sea-state-dependent drag coefficient is parameterized in forecast models. Our results also suggest that wind speed and wind stress measurements performed on a wave-following platform can be strongly contaminated by the platform motion if the instrument is inside the wave boundary layer of dominant waves.

    Significance Statement

    Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in oblique directions using large-eddy simulation. We find that waves traveling at a 45° angle or larger to the wind grow as expected, but do not increase or even decrease the surface friction felt by the wind—a surprising result that has significant implications for how oblique wind-waves are represented as a source of surface friction in forecast models.

     
    more » « less
  2. Quantification of roughness effects on free surface flows is unquestionably necessary when describing water and material transport within ecosystems. The conventional hydrodynamic resistance formula empirically shows that the Darcy–Weisbach friction factor f~(r/hw)1/3 describes the energy loss of flowing water caused by small-scale roughness elements characterized by size r (< more » « less
  3. Abstract

    Air–sea momentum and scalar fluxes are strongly influenced by the coupling dynamics between turbulent winds and a spectrum of waves. Because direct field observations are difficult, particularly in high winds, many modeling and laboratory studies have aimed to elucidate the impacts of the sea state and other surface wave features on momentum and energy fluxes between wind and waves as well as on the mean wind profile and drag coefficient. Opposing wind is common under transient winds, for example, under tropical cyclones, but few studies have examined its impacts on air–sea fluxes. In this study, we employ a large-eddy simulation for wind blowing over steep sinusoidal waves of varying phase speeds, both following and opposing wind, to investigate impacts on the mean wind profile, drag coefficient, and wave growth/decay rates. The airflow dynamics and impacts rapidly change as the wave age increases for waves following wind. However, there is a rather smooth transition from the slowest waves following wind to the fastest waves opposing wind, with gradual enhancement of a flow perturbation identified by a strong vorticity layer detached from the crest despite the absence of apparent airflow separation. The vorticity layer appears to increase the effective surface roughness and wave form drag (wave attenuation rate) substantially for faster waves opposing wind.

    Significance Statement

    Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in the opposite direction using large-eddy simulation. We find that when waves oppose wind, they decay as expected, but also increase the surface friction much more drastically than when waves follow wind. This finding has important implications for how waves opposing wind are represented as a source of surface friction in forecast models.

     
    more » « less
  4. Abstract

    The need for operational models describing the friction factorfin streams remains undisputed given its utility across a plethora of hydrological and hydraulic applications concerned with shallow inertial flows. For small-scale roughness elements uniformly covering the wetted parameter of a wide channel, the Darcy-Weisbachf = 8(u*/Ub)2is widely used at very high Reynolds numbers, whereu*is friction velocity related to the surface kinematic stress,Ub = Q/Ais bulk velocity,Qis flow rate, andAis cross-sectional area orthogonal to the flow direction. In natural streams, the presence of vegetation introduces additional complications to quantifyingf, the subject of the present work. Turbulent flow through vegetation are characterized by a number of coherent vortical structures: (i) von Karman vortex streets in the lower layers of vegetated canopies, (ii) Kelvin-Helmholtz as well as attached eddies near the vegetation top, and (iii) attached eddies well above the vegetated layer. These vortical structures govern the canonical mixing lengths for momentum transfer and their influence onfis to be derived. The main novelty is that the friction factor of vegetated flow can be expressed asfv = 4Cd(Uv/Ub)2whereUvis the spatially averaged velocity within the canopy volume, andCdis a local drag coefficient per unit frontal area derived to include the aforemontioned layer-wise effects of vortical structures within and above the canopy along with key vegetation properties. The proposed expression is compared with a number of empirical relations derived for vegetation under emergent and submerged conditions as well as numerous data sets covering a wide range of canopy morphology, densities, and rigidity. It is envisaged that the proposed formulation be imminently employed in eco-hydraulics where the interaction between flow and vegetation is being sought.

     
    more » « less
  5. We present direct numerical simulation results of a wave-current boundary layer in a current-dominated flow regime (wave driven to steady current ratio of 0.34) over bumpy walls for hydraulically smooth flow conditions (wave orbital excursion to roughness ratio of 10). The turbulent, wave-current channel flow has a friction Reynolds number of $350$ and a wave Reynolds number of $351$ . At the lower boundary, a bumpy wall is introduced with a direct forcing immersed boundary method, while the top wall has a free-slip boundary condition. Despite the hydraulically smooth nature of the wave-driven flow, the phase variations of the turbulent statistics for the bumpy wall case were found to vary substantially when compared with the flat wall case. Results show that the addition of weak waves to a steady current over flat walls has a negligible effect on the turbulence or bottom drag. However, the addition of weak waves to a steady current over bumpy walls has a significant effect through enhancement of the Reynolds stress (RS) accompanied by a drag coefficient increase of $11\,\%$ relative to the steady current case. This enhancement occurs just below the top of the roughness elements during the acceleration portion of the wave cycle: Turbulent kinetic energy (TKE) is subsequently transported above the roughness elements to a maximum height of roughly twice the turbulent Stokes length. We analyse the TKE and RS budgets to understand the mechanisms behind the alterations in the turbulence properties due to the bumpy wall. The results provide a mechanistic picture of the differences between bumpy and flat walls in wave-current turbulent boundary layers and illustrate the importance of bumpy features even in weakly energetic wave conditions. 
    more » « less