skip to main content


Title: Wildfire!
Wildland fires have become a regular aspect of life for people living in the western United States. Wildfire smoke is now impacting air quality across the United States, and there are now more wildfire smoke-related illnesses and deaths in the eastern than the western United States. Unprecedented wildfires have swept through Australia, Russia, and Portugal in the last few years. Like other natural disasters, wildland fires can have a devastating impact on communities that are directly in their paths. However, they also cast a much bigger footprint due to the smoke they release on a global scale. These smoke events can lead to health warnings, noticeable irritation to the lungs, and cancelled outdoor events. They have quickly become part of the life experience of many students around the world. Their connections to global climate change and environmental policy, juxtaposition as positive forces in ecosystem succession, and relationship to a wide variety of both simple and complex natural phenomena leave science teachers with an opportunity to frame myriad lessons within the context of wildfire. We present a series of such lessons, adaptable to various levels of physical or integrated science.  more » « less
Award ID(s):
1830047
NSF-PAR ID:
10380663
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The science teacher
Volume:
90
Issue:
2
ISSN:
0036-8555
Page Range / eLocation ID:
32-39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland–urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM 2.5 (particulate matter with diameter <2.5 μm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change–induced wildfire smoke could approach projected overall increases in temperature-related mortality from climate change—but that both estimates remain uncertain. We use model results to highlight important areas for future research and to draw lessons for policy. 
    more » « less
  2. The size and frequency of wildland fires in the western United States have dramatically increased in recent years. On high-fire-risk days, a small fire ignition can rapidly grow and become out of control. Early detection of fire ignitions from initial smoke can assist the response to such fires before they become difficult to manage. Past deep learning approaches for wildfire smoke detection have suffered from small or unreliable datasets that make it difficult to extrapolate performance to real-world scenarios. In this work, we present the Fire Ignition Library (FIgLib), a publicly available dataset of nearly 25,000 labeled wildfire smoke images as seen from fixed-view cameras deployed in Southern California. We also introduce SmokeyNet, a novel deep learning architecture using spatiotemporal information from camera imagery for real-time wildfire smoke detection. When trained on the FIgLib dataset, SmokeyNet outperforms comparable baselines and rivals human performance. We hope that the availability of the FIgLib dataset and the SmokeyNet architecture will inspire further research into deep learning methods for wildfire smoke detection, leading to automated notification systems that reduce the time to wildfire response. 
    more » « less
  3. The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study plan to guide the suite of required measurements in forested sites representative of many prescribed burning programs in the southeastern United States and increasingly common high-intensity fires in the western United States. Here we provide an overview of the proposed experiment and recommendations for key measurements. The FASMEE study provides a template for additional large-scale experimental campaigns to advance fire science and operational fire and smoke models. 
    more » « less
  4. Abstract Purpose of Review Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. Recent Findings Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Summary Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice. 
    more » « less
  5. Abstract

    As anthropogenic emissions continue to decline and emissions from landscape (wild, prescribed, and agricultural) fires increase across the coming century, the relative importance of landscape‐fire smoke on air quality and health in the United States (US) will increase. Landscape fires are a large source of fine particulate matter (PM2.5), which has known negative impacts on human health. The seasonal and spatial distribution, particle composition, and co‐emitted species in landscape‐fire emissions are different from anthropogenic sources of PM2.5. The implications of landscape‐fire emissions on the sub‐national temporal and spatial distribution of health events and the relative health importance of specific pollutants within smoke are not well understood. We use a health impact assessment with observation‐based smoke PM2.5to determine the sub‐national distribution of mortality and the sub‐national and sub‐annual distribution of asthma morbidity attributable to US smoke PM2.5from 2006 to 2018. We estimate disability‐adjusted life years (DALYs) for PM2.5and 18 gas‐phase hazardous air pollutants (HAPs) in smoke. Although the majority of large landscape fires occur in the western US, we find the majority of mortality (74%) and asthma morbidity (on average 75% across 2006–2018) attributable to smoke PM2.5occurs outside the West, due to higher population density in the East. Across the US, smoke‐attributable asthma morbidity predominantly occurs in spring and summer. The number of DALYs associated with smoke PM2.5is approximately three orders of magnitude higher than DALYs associated with gas‐phase smoke HAPs. Our results indicate awareness and mitigation of landscape‐fire smoke exposure is important across the US.

     
    more » « less