Satellite- and ground-based radar observations have shown that the northern half of Argentina, South America, is a region susceptible to rapid upscale growth of deep moist convection into larger organized mesoscale convective systems (MCSs). In particular, the complex terrain of the Sierras de Córdoba is hypothesized to be vital to this upscale-growth process. A canonical orographic supercell-to-MCS transition case study was analyzed to determine the influence that complex terrain had on processes governing upscale convective growth. High-resolution numerical modeling experiments were conducted in which the terrain height of the Sierras de Córdoba was systematically modified by raising or lowering the elevation of terrain above 1000 m. The alteration of the terrain lead to both direct and indirect effects on storm morphology. A direct effect included terrain blocking of cold pools, whereas indirect effects included terrain-induced variations in pertinent storm environmental parameters (e.g., vertical wind shear, convective available potential energy). When the terrain was raised, low-level and deep-layer vertical wind shear increased, mixed-layer convective available potential energy decreased, deep moist convection initiated earlier, and cold pools were blocked and generally became stronger and deeper. The reverse occurred when the terrain was lowered, resulting in a weaker supercell that did not grow upscale into an MCS. The control simulation supercell displayed the deepest cold pool and correspondingly fastest transition from supercell to MCS, potentially revealing that the unique terrain configuration of the Sierras de Córdoba was supportive of the observed rapid upscale convective growth of this orographic supercell.
- Award ID(s):
- 1661679
- NSF-PAR ID:
- 10380752
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 150
- Issue:
- 8
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 2111 to 2138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Orographic deep convection (DC) initiation and rapid evolution from supercells to mesoscale convective systems (MCS) are common near the Sierras de Cόrdoba, Argentina, which was the focal point of the Remote Sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This study used an idealized numerical model with elongated north-south terrain similar to that of the Sierras de Cόrdoba to address how variations in terrain height affected the environment and convective morphology. Simulations used a thermodynamic profile from a RELAMPAGO event that featured both supercell and MCS storm modes. Results revealed that DC initiated earlier in simulations with higher terrain, owing both to stronger upslope flows and standing mountain waves. All simulations resulted in supercell formation, with higher terrain supercells initiating closer to the terrain peak and moving slower off the terrain. Higher terrain simulations displayed increases in both low-level and deep-layer wind shear along the eastern slopes of the terrain that were related to the enhanced upslope flows, supporting stronger and wider supercell updrafts/downdrafts and a wider swath of heavy rainfall. Deeper and stronger cold pools from these wider and stronger higher terrain supercells led to surging outflow that reduced convective available potential energy accessible to deep convective updrafts, resulting in quicker supercell demise off the terrain. Lower terrain supercells moved quickly off the terrain, merged with weaker convective cells, and resulted in a quasi-organized MCS. These results demonstrate that terrain-induced flow modification may lead to substantial local variations in convective morphology.more » « less
-
Abstract This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generated cold pools. Idealized simulations that expand upon this two-layer approach with orography and a well-mixed layer below the inversion suggest that elevated bores provide a possible mechanism for daytime squall lines to remove the capping inversion often found over the Great Plains, particularly in synoptically disturbed environments where vertical shear could create a favorable trapping of wave energy.more » « less
-
Abstract This study used radar observations and a high‐resolution numerical simulation to explore the interactions between an mesoscale convective system (MCS), cold pool outflows, and atmospheric bores in a non‐uniform baroclinic environment. The bores were generated by a nocturnal MCS that occurred on 2–3 June 2017 over the southern North China Plain. The goal of this investigation is to determine how the structure of bores varied within this non‐uniform environment and whether and how the bores would maintain the MCS and alter its structure. To the southwest of the MCS, where there was large CAPE and a well‐mixed boundary layer, discrete convection initiation occurred behind a single radar fine line (RFL) maintaining the propagation of the MCS. To the southeast of the MCS, multiple RFLs were found suggesting the generation of an undular bore in an environment containing an intense nocturnal stable boundary layer with dry upper layers and little CAPE. Hydraulic and nonlinear theory were applied to the simulation of the MCS revealing that the differences in the bore evolution depended on both the characteristics of the cold pool and the variations in the ambient environment. Thus, the characteristics of the ambient environment and the associated differences in bore structure impacted the maintenance and organization of the MCS. This study implies the importance of an accurate representation of the low‐level ambient environment and the microphysics and kinematics within the MCS to accurately simulate and forecast cold pools, the generation and evolution of bores, and their impact on nocturnal MCSs.
-
Cheng, Y (Ed.)Abstract This study used radar observations and a high-resolution numerical simulation to explore the interactions between an mesoscale convective system (MCS), cold pool outflows, and atmospheric bores in a non-uniform baroclinic environment. The bores were generated by a nocturnal MCS that occurred on 2–3 June 2017 over the southern North China Plain. The goal of this investigation is to determine how the structure of bores varied within this non-uniform environment and whether and how the bores would maintain the MCS and alter its structure. To the southwest of the MCS, where there was large CAPE and a well-mixed boundary layer, discrete convection initiation occurred behind a single radar fine line (RFL) maintaining the propagation of the MCS. To the southeast of the MCS, multiple RFLs were found suggesting the generation of an undular bore in an environment containing an intense nocturnal stable boundary layer with dry upper layers and little CAPE. Hydraulic and nonlinear theory were applied to the simulation of the MCS revealing that the differences in the bore evolution depended on both the characteristics of the cold pool and the variations in the ambient environment. Thus, the characteristics of the ambient environment and the associated differences in bore structure impacted the maintenance and organization of the MCS. This study implies the importance of an accurate representation of the low-level ambient environment and the microphysics and kinematics within the MCS to accurately simulate and forecast cold pools, the generation and evolution of bores, and their impact on nocturnal MCSs.more » « less