skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expedient Synthesis of a Library of Heparan Sulfate‐Like “Head‐to‐Tail” Linked Multimers for Structure and Activity Relationship Studies**
Abstract Heparan sulfate (HS) plays important roles in many biological processes. The inherent complexity of naturally existing HS has severely hindered the thorough understanding of their structure‐activity relationship. To facilitate biological studies, a new strategy has been developed to synthesize a HS‐like pseudo‐hexasaccharide library, where HS disaccharides were linked in a “head‐to‐tail” fashion from the reducing end of a disaccharide module to the non‐reducing end of a neighboring module. Combinatorial syntheses of 27 HS‐like pseudo‐hexasaccharides were achieved. This new class of compounds bound with fibroblast growth factor 2 (FGF‐2) with similar structure‐activity trends as HS oligosaccharides bearing native glycosyl linkages. The ease of synthesis and the ability to mirror natural HS activity trends suggest that the new head‐to‐tail linked pseudo‐oligosaccharides could be an exciting tool to facilitate the understanding of HS biology.  more » « less
Award ID(s):
1933525
PAR ID:
10380802
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
48
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite the recent progress on the solution-phase enzymatic synthesis of heparan sulfate (HS) and chondroitin sulfate (CS), solid-phase enzymatic synthesis has not been fully investigated. Here, we describe the solid-phase enzymatic synthesis of HS and CS backbone oligosaccharides using specialized linkers. We demonstrate the use of immobilized HS linker to synthesize CS, and the use of immobilized CS linker to synthesize HS. The linkers were then digested with chondroitin ABCase and heparin lyases, respectively, to obtain the products. Our findings uncover a potential approach for accelerating the synthesis of structurally homogeneous HS and CS oligosaccharides. 
    more » « less
  2. Abstract Heparan sulfate (HS) is a sulfated polysaccharide with a wide range of biological activities. There is an increasing interest in the development of structurally homogeneous HS oligosaccharides as therapeutics. However, the factors influencing the pharmacokinetic properties of HS-based therapeutics remain unknown. Here, we report the pharmacokinetic properties of a panel of dodecasaccharides (12-mers) with varying sulfation patterns in healthy mice and uncover the pharmacokinetic properties of an octadecasaccharide (18-mer) in acutely injured mice. In the 12-mer panel, 1 12-mer, known as dekaparin, is anticoagulant, and 3 12-mers are nonanticoagulant. The concentrations of 12-mers in plasma and urine were determined by the disaccharide analysis using liquid chromatography coupled with tandem mass spectrometry. We observed a striking difference between anticoagulant and nonanticoagulant oligosaccharides in the 12-mer panel, showing that anticoagulant dekaparin had a 4.6-fold to 8.6-fold slower clearance and 4.4-fold to 8-fold higher plasma exposure compared to nonanticoagulant 12-mers. We also observed that the clearance of HS oligosaccharides is impacted by disease. Using an antiinflammatory 18-mer, we discovered that the clearance of 18-mer is reduced 2.8-fold in a liver failure mouse model compared to healthy mice. Our results suggest that oligosaccharides are rapidly cleared renally if they have low interaction with circulating proteins. We observed that the clearance rate of oligosaccharides is inversely associated with the degree of binding to target proteins, which can vary in response to pathophysiological conditions. Our findings uncover a contributing factor for the plasma and renal clearance of oligosaccharides which will aid the development of HS-based therapeutics. 
    more » « less
  3. Abstract Fucosylated chondroitin sulfate (FucCS) is a unique marine glycosaminoglycan that exhibits diverse biological functions, including antiviral and anticoagulant activity. In previous work, the FucCS derived from Pentacta pygmaea (PpFucCS) showed moderate anticoagulant effect but high inhibitory activity against the Wuhan strain of severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this study, we perform free-radical depolymerization of PpFucCS by the copper-based Fenton method to generate low molecular weight (MW) oligosaccharides. PpFucCS oligosaccharides were structurally analyzed by 1H nuclear magnetic resonance spectroscopy and were used to conduct structure–activity relationship studies regarding their effects against SARS-CoV-2 and clotting. Anticoagulant properties were measured by activated partial thromboplastin time, protease (factors Xa and IIa) inhibition by serine protease inhibitors (antithrombin [AT] and heparin cofactor II [HCII]), and competitive surface plasmon resonance (SPR) assay using AT, HCII, and IIa. Anti-SARS-CoV-2 properties were measured by the concentration-response inhibitory curves of HEK-293T-human angiotensin-converting enzyme-2 cells infected with a baculovirus pseudotyped SARS-CoV-2 Delta variant spike (S)-protein and competitive SPR assays using multiple S-proteins (Wuhan, N501Y [Alpha], K417T/E484K/N501Y [Gamma], L542R [Delta], and Omicron [BA.2 subvariant]). Cytotoxicity of native PpFucCS and oligosaccharides was also assessed. The PpFucCS-derived oligosaccharide fraction of the highest MW showed great anti-SARS-CoV-2 Delta activity and reduced anticoagulant properties. Results have indicated no cytotoxicity and MW dependency on both anti-SARS-CoV-2 and anticoagulant effects of PpFucCS, as both actions were reduced accordingly to the MW decrease of PpFucCS. Our results demonstrate that the high-MW structures of PpFucCS is a key structural element to achieve the maximal anti-SARS-CoV-2 and anticoagulant effects. 
    more » « less
  4. Abstract Chemoenzymatic approaches using carbohydrate‐active enzymes (CAZymes) offer a promising avenue for the synthesis of glycans like oligosaccharides. Here, we report a novel chemoenzymatic route for cellodextrins synthesis employed by chimeric CAZymes, akin to native glycosyltransferases, involving the unprecedented participation of a “non‐catalytic” lectin‐like domain or carbohydrate‐binding modules (CBMs) in the catalytic step for glycosidic bond synthesis using β‐cellobiosyl donor sugars as activated substrates. CBMs are often thought to play a passive substrate targeting role in enzymatic glycosylation reactions mostly via overcoming substrate diffusion limitations for tethered catalytic domains (CDs) but are not known to participate directly in any nucleophilic substitution mechanisms that impact the actual glycosyl transfer step. This study provides evidence for the direct participation of CBMs in the catalytic reaction step for β‐glucan glycosidic bonds synthesis enhancing activity for CBM‐based CAZyme chimeras by >140‐fold over CDs alone. Dynamic intradomain interactions that facilitate this poorly understood reaction mechanism were further revealed by small‐angle X‐ray scattering structural analysis along with detailed mutagenesis studies to shed light on our current limited understanding of similar transglycosylation‐type reaction mechanisms. In summary, our study provides a novel strategy for engineering similar CBM‐based CAZyme chimeras for the synthesis of bespoke oligosaccharides using simple activated sugar monomers. 
    more » « less
  5. Abstract SARS-CoV-2 infection causes spike-dependent fusion of infected cells with ACE2 positive neighboring cells, generating multi-nuclear syncytia that are often associated with severe COVID. To better elucidate the mechanism of spike-induced syncytium formation, we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical stimulator for spike-induced cell-cell fusion. We show that HS binds spike and promotes spike-induced ACE2 clustering, forming synapse-like cell-cell contacts that facilitate fusion pore formation between ACE2-expresing and spike-transfected human cells. Chemical or genetic inhibition of HS mitigates ACE2 clustering, and thus, syncytium formation, whereas in a cell-free system comprising purified HS and lipid-anchored ACE2, HS stimulates ACE2 clustering directly in the presence of spike. Furthermore, HS-stimulated syncytium formation and receptor clustering require a conserved ACE2 linker distal from the spike-binding site. Importantly, the cell fusion-boosting function of HS can be targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice. Thus, HS, as a host factor exploited by SARS-CoV-2 to facilitate receptor clustering and a stimulator of infection-associated syncytium formation, may be a promising therapeutic target for severe COVID. 
    more » « less