skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps
Abstract Recovering high-quality metagenome-assembled genomes (MAGs) from complex microbial ecosystems remains challenging. Recently, high-throughput chromosome conformation capture (Hi-C) has been applied to simultaneously study multiple genomes in natural microbial communities. We develop HiCBin, a novel open-source pipeline, to resolve high-quality MAGs utilizing Hi-C contact maps. HiCBin employs the HiCzin normalization method and the Leiden clustering algorithm and includes the spurious contact detection into binning pipelines for the first time. HiCBin is validated on one synthetic and two real metagenomic samples and is shown to outperform the existing Hi-C-based binning methods. HiCBin is available at https://github.com/dyxstat/HiCBin .  more » « less
Award ID(s):
2125142
PAR ID:
10380889
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Genome Biology
Volume:
23
Issue:
1
ISSN:
1474-760X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The introduction of high-throughput chromosome conformation capture (Hi-C) into metagenomics enables reconstructing high-quality metagenome-assembled genomes (MAGs) from microbial communities. Despite recent advances in recovering eukaryotic, bacterial, and archaeal genomes using Hi-C contact maps, few of Hi-C-based methods are designed to retrieve viral genomes. Here we introduce ViralCC, a publicly available tool to recover complete viral genomes and detect virus-host pairs using Hi-C data. Compared to other Hi-C-based methods, ViralCC leverages the virus-host proximity structure as a complementary information source for the Hi-C interactions. Using mock and real metagenomic Hi-C datasets from several different microbial ecosystems, including the human gut, cow fecal, and wastewater, we demonstrate that ViralCC outperforms existing Hi-C-based binning methods as well as state-of-the-art tools specifically dedicated to metagenomic viral binning. ViralCC can also reveal the taxonomic structure of viruses and virus-host pairs in microbial communities. When applied to a real wastewater metagenomic Hi-C dataset, ViralCC constructs a phage-host network, which is further validated using CRISPR spacer analyses. ViralCC is an open-source pipeline available athttps://github.com/dyxstat/ViralCC. 
    more » « less
  2. Ma, Jian (Ed.)
    Metagenomic Hi-C (metaHi-C) enables the recognition of relationships between contigs in terms of their physical proximity within the same cell, facilitating the reconstruction of high-quality metagenomeassembled genomes (MAGs) from complex microbial communities. However, current Hi-C-based contig binning methods solely depend on Hi-C interactions between contigs to group them, ignoring invaluable biological information, including the presence of single-copy marker genes. Here, we introduce ImputeCC, an integrative contig binning tool tailored for metaHi-C datasets. ImputeCC integrates Hi-C interactions with the inherent discriminative power of single-copy marker genes, initially clustering them as preliminary bins, and develops a new constrained random walk with restart (CRWR) algorithm to improve Hi-C connectivity among these contigs. Extensive evaluations on mock and real metaHi-C datasets from diverse environments, including the human gut, wastewater, cow rumen, and sheep gut, demonstrate that ImputeCC consistently outperforms other Hi-C-based contig binning tools. ImputeCC’s genuslevel analysis of the sheep gut microbiota further reveals its ability and potential to recover essential species from dominant genera such as Bacteroides, detect previously unrecognized genera, and shed light on the characteristics and functional roles of genera such as Alistipes within the sheep gut ecosystem. Availability: ImputeCC is implemented in Python and available at https://github.com/dyxstat/ImputeCC. The Supplementary Information is available at https://doi.org/10.5281/zenodo.10776604. 
    more » « less
  3. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Reconstructing microbial genomes from metagenomic short-read data can be challenging due to the unknown and uneven complexity of microbial communities. This complexity encompasses highly diverse populations, which often includes strain variants. Reconstructing high-quality genomes is a crucial part of the metagenomic workflow, as subsequent ecological and metabolic inferences depend on their accuracy, quality, and completeness. In contrast to microbial communities in other ecosystems, there has been no systematic assessment of genome-centric metagenomic workflows for drinking water microbiomes. In this study, we assessed the performance of a combination of assembly and binning strategies for time series drinking water metagenomes that were collected over 6 months. The goal of this study was to identify the combination of assembly and binning approaches that result in high-quality and -quantity metagenome-assembled genomes (MAGs), representing most of the sequenced metagenome. Our findings suggest that the metaSPAdes coassembly strategies had the best performance, as they resulted in larger and less fragmented assemblies, with at least 85% of the sequence data mapping to contigs greater than 1 kbp. Furthermore, a combination of metaSPAdes coassembly strategies and MetaBAT2 produced the highest number of medium-quality MAGs while capturing at least 70% of the metagenomes based on read recruitment. Utilizing different assembly/binning approaches also assists in the reconstruction of unique MAGs from closely related species that would have otherwise collapsed into a single MAG using a single workflow. Overall, our study suggests that leveraging multiple binning approaches with different metaSPAdes coassembly strategies may be required to maximize the recovery of good-quality MAGs. IMPORTANCE Drinking water contains phylogenetic diverse groups of bacteria, archaea, and eukarya that affect the esthetic quality of water, water infrastructure, and public health. Taxonomic, metabolic, and ecological inferences of the drinking water microbiome depend on the accuracy, quality, and completeness of genomes that are reconstructed through the application of genome-resolved metagenomics. Using time series metagenomic data, we present reproducible genome-centric metagenomic workflows that result in high-quality and -quantity genomes, which more accurately signifies the sequenced drinking water microbiome. These genome-centric metagenomic workflows will allow for improved taxonomic and functional potential analysis that offers enhanced insights into the stability and dynamics of drinking water microbial communities. 
    more » « less
  4. Abstract MotivationMetagenomic binning aims to retrieve microbial genomes directly from ecosystems by clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample, shotgun-based binning methods struggle to distinguish closely related species only using composition information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single sample. ResultsWe develop HiFine, a novel binning pipeline to refine the binning results of metagenomic contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods, which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting unbinned contigs. We demonstrate that HiFine significantly improves the existing binning results of both types of binning methods and achieves better performance in constructing species genomes on publicly available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of tools for the binning of metagenomic contigs. Availability and implementationHiFine is available at https://github.com/dyxstat/HiFine. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  5. ABSTRACT Metagenome-assembled genomes (MAGs) expand our understanding of microbial diversity, evolution, and ecology. Concerns have been raised on how sequencing, assembly, binning, and quality assessment tools may result in MAGs that do not reflect single populations in nature. Here, we reflect on another issue, i.e., how to handle highly similar MAGs assembled from independent data sets. Obtaining multiple genomic representatives for a species is highly valuable, as it allows for population genomic analyses; however, when retaining genomes of closely related populations, it complicates MAG quality assessment and abundance inferences. We show that (i) published data sets contain a large fraction of MAGs sharing >99% average nucleotide identity, (ii) different software packages and parameters used to resolve this redundancy remove very different numbers of MAGs, and (iii) the removal of closely related genomes leads to losses of population-specific auxiliary genes. Finally, we highlight some approaches that can infer strain-specific dynamics across a sample series without dereplication. 
    more » « less