This work in progress paper poses the research question: what are the qualitatively different ways that novice and expert engineers experience ambiguity? Engineers are frequently confronted with complex, unique, and challenging problems. Many of our most pressing engineering problems contain ambiguous elements, and a core activity of engineering is solving these complex problems effectively. We present a pilot study consisting of four in-depth interviews with senior civil engineering students. The data collection is ongoing; therefore, our results are not complete. Some preliminary categories of ambiguity have been identified. Once the data set is complete, we will analyze it using phenomenography in order to better understand the variations in these individuals’ experiences of ambiguity in engineering problem solving.
more »
« less
Comparing engineering students’ and professionals’ conceptions of ambiguity.
Abstract— Engineers are frequently confronted with complex, unique, and challenging problems. Many of our most pressing engineering problems contain ambiguous elements, and a core activity of engineering is being able to solve these complex problems effectively. While engineering problems are often described as ambiguous, ambiguity has not been clearly defined in the literature in the context of engineering problem solving. This work-in-progress paper describes our initial results to understand how ambiguity is experienced during engineering problem solving. We interviewed both engineering students and engineering professionals about ambiguous problems they have encountered. We found that both groups identified technical ambiguity as the core element of engineering problem solving. They also described differences between classroom and workplace problems, with students describing classroom problems as “purposefully” ambiguous. Students had strong negative emotional reactions to ambiguity, in contrast to professionals who seemed to accept ambiguity as a common element in engineering problem. Our initial findings suggest that changes to engineering education practice that allow students to become comfortable with ambiguity would better prepare them for the ambiguous problems they will face in the workplace. Keywords—problem solving, ambiguity, qualitative
more »
« less
- Award ID(s):
- 1824610
- PAR ID:
- 10380939
- Date Published:
- Journal Name:
- Proceedings of the Frontiers in Education Conference. (41696 2022. IEEE).
- Page Range / eLocation ID:
- 1-4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract— In this Work in Progress Research paper, we present preliminary results on the analysis of the problems present in a common engineering textbook. In order to transition students from novice to expert problem solving, they must have practice solving problems that are typical of engineering practice, i.e. illstructured and complex. While it is generally believed that classroom problems are for the most part closed-ended and not complex, there is no work in the literature to confirm this belief. In order to address this gap, we analyzed the types of problems present in a commonly used statics textbook, using Jonassen’s well-known typology. Our findings show that almost all of the problems are algorithmic, with a few rule-based and story problems. There were no problems with higher levels of illstructuredness, such as decision-making, diagnosis-solution, or design problems. Some educators may believe that because statics is an introductory level class, it is appropriate to only present wellstructured problems. We argue that it is both possible and necessary to include ill-structured problems in classes at all levels. Doing so could potentially support students’ critical transition from novice to expert problem solvers. Keywords—problem-solving, statics, ambiguitymore » « less
-
Workplace engineering problems are different from the problems that undergraduate engineering students typically encounter in most classroom settings. Students are most commonly given well-structured problems which have clear solution paths along with well-defined constraints and goals. This paper reports on research that examines how undergraduate engineering students perceived solving an ill-structured problem. Eighteen undergraduate civil engineering students were asked to solve an ill-structured engineering problem, and were interviewed after they completed solving the problem. This qualitative study is guided by the following research question: What factors do students perceive to influence their solving of an ill-structured civil engineering problem? Students’ responses to seven follow-up interview questions were transcribed and reviewed by research team members, which were used to develop codes and themes associated with these responses. Students’ transcripts were then coded following the developed codes. The analysis of data revealed that students were generally aware of the main positives and negatives of their proposed solutions to the ill-structured problem and reported that their creativity influenced their solutions and problem solving processes. Student responses also indicated that specific life events such as classes that they had taken, personal experiences, and exposure to other ill-structured problems during an internship helped them develop their proposed solution. Given students’ responses and overall findings, this supports creating learning environments for engineering students where they can support increasing their creativity and be more exposed to complex engineering problems.more » « less
-
Solving open-ended complex problems is an essential part of being an engineer and one of the qualities needed in an engineering workplace. In order to help undergraduate engineering students develop such qualities and better prepare them for their future careers, this study is a preliminary effort to explore the problem solving approaches adopted by a student, faculty, and practicing engineer in civil engineering. As part of an ongoing NSF-funded study, this paper qualitatively investigates how three participants solve an ill-structured engineering problem. This study is guided by the following research question: What are the similarities and differences between a student, faculty, and practicing engineer in the approach to solve an ill-structured engineering problem? Verbal protocol analysis was used to answer this research question. Participants were asked to verbalize their response while they worked on the proposed problem. This paper includes a detailed analysis of the observed problem solving processes of the participants. Our preliminary findings indicate some distinct differences between the student, professor, and practicing engineer in their problem solving approaches. The student and practicing engineer used their prior knowledge to develop a solution, while the faculty did not make any connection to outside knowledge. It was also observed that the faculty and practicing engineer spent a great deal of time on feasibility and safety issues, whereas the student spent more time detailing the tool that would be used as their solution. Through additional data collection and analysis, we will better understand the similarities and differences between students, professionals, and faculty in terms of how they approach an ill-structured problem. This study will provide insights that will lead to the development of ways to better prepare engineering students to solve complex problems.more » « less
-
null (Ed.)Solving open-ended complex problems is an essential skill for part of being an engineer and a common activity in the one of the qualities needed in an engineering workplace. In order to help undergraduate engineering students develop such qualities and better prepare them for their future careers, this study is a preliminary effort to explore the problem solving approaches adopted by a student, faculty, and practicing engineer in civil engineering. As part of an ongoing NSF-funded study, this paper qualitatively investigates how three participants solve the following research question: What are the similarities and differences between a student, faculty, and practicing engineer in the approach to solve an ill-structured engineering problem? Verbal protocol analysis was used to answer this research question. Participants were asked to verbalize their response while they worked on the proposed problem. This paper includes a detailed analysis of the observed problem-solving processes of the participants. Our preliminary findings indicate some distinct differences between the student, professor, and practicing engineer in their problem-solving approaches. The student and practicing engineer used their prior knowledge to develop a solution, while the faculty did not make any connection to outside knowledge. It was also observed that the faculty and practicing engineer spent a great deal of time on feasibility and safety issues, whereas the student spent more time detailing the tool that would be used as their solution. Through additional data collection and analysis, we will better understand the similarities and differences between students, professionals, and faculty in terms of how they approach an ill-structured problem. This study will provide insights that will lead to the development of ways to better prepare engineering students to solve complex problems.more » « less
An official website of the United States government

