skip to main content


Title: Non-linear operator approximations for initial value problems
Time-evolution of partial differential equations is the key to model several dynamical processes, events forecasting but the operators associated with such problems are non-linear. We propose a Padé approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce real-world datasets. The Padé exponential operator uses a to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Padé network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like Epidemic forecasting (for example, COVID-19) can be formulated as a 2D time-varying operator problem. The proposed Padé exponential operators yield better prediction results ( better MAE than best neural operator (non-neural operator deep learning model)) compared to state-of-the-art forecasting models.  more » « less
Award ID(s):
1932620
NSF-PAR ID:
10380953
Author(s) / Creator(s):
Date Published:
Journal Name:
International Conference on Learning Representations
Volume:
2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Time-evolution of partial differential equations is the key to model several dynamical processes, events forecasting but the operators associated with such problems are non-linear. We propose a Padé approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce real-world datasets. The Padé exponential operator uses a to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Padé network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like Epidemic forecasting (for example, COVID-19) can be formulated as a 2D time-varying operator problem. The proposed Padé exponential operators yield better prediction results ( better MAE than best neural operator (non-neural operator deep learning model)) compared to state-of-the-art forecasting models. 
    more » « less
  2. Time-evolution of partial differential equations is fundamental for modeling several complex dynamical processes and events forecasting, but the operators associated with such problems are non-linear. We propose a Pad´e approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and the activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce and noisy real-world datasets. The Pad´e exponential operator uses a recurrent structure with shared parameters to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Pad´e network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like epidemic forecasting (for example, COVID- 19) can be formulated as a 2D time-varying operator problem. The proposed Pad´e exponential operators yield better prediction results (53% (52%) better MAE than best neural operator (non-neural operator deep learning model)) compared to state-of-the-art forecasting models. 
    more » « less
  3. Time-evolution of partial differential equations is fundamental for modeling several complex dynamical processes and events forecasting, but the operators associated with such problems are non-linear. We propose a Pad´e approximation based exponential neural operator scheme for efficiently learning the map between a given initial condition and the activities at a later time. The multiwavelets bases are used for space discretization. By explicitly embedding the exponential operators in the model, we reduce the training parameters and make it more data-efficient which is essential in dealing with scarce and noisy real-world datasets. The Pad´e exponential operator uses a recurrent structure with shared parameters to model the non-linearity compared to recent neural operators that rely on using multiple linear operator layers in succession. We show theoretically that the gradients associated with the recurrent Pad´e network are bounded across the recurrent horizon. We perform experiments on non-linear systems such as Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach achieves the best performance and at the same time is data-efficient. We also show that urgent real-world problems like epidemic forecasting (for example, COVID- 19) can be formulated as a 2D time-varying operator problem. The proposed Pad´e exponential operators yield better prediction results (53% (52%) better MAE than best neural operator (non-neural operator deep learning model)) compared to state-of-the-art forecasting models. 
    more » « less
  4. Yan Liu and Been Kim (Ed.)
    Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty for solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a coupled multiwavelets neural operator (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a 2ˆ „ 4ˆ improvement relative L2 error compared to the best results from the state-of-the-art models. 
    more » « less
  5. Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty for solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a coupled multiwavelets neural operator (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a 2ˆ „ 4ˆ improvement relative L2 error compared to the best results from the state-of-the-art models. 
    more » « less