skip to main content


Title: FLASH: F ast Neura l A rchitecture S earch with H ardware Optimization
Neural architecture search (NAS) is a promising technique to design efficient and high-performance deep neural networks (DNNs). As the performance requirements of ML applications grow continuously, the hardware accelerators start playing a central role in DNN design. This trend makes NAS even more complicated and time-consuming for most real applications. This paper proposes FLASH, a very fast NAS methodology that co-optimizes the DNN accuracy and performance on a real hardware platform. As the main theoretical contribution, we first propose the NN-Degree, an analytical metric to quantify the topological characteristics of DNNs with skip connections (e.g., DenseNets, ResNets, Wide-ResNets, and MobileNets). The newly proposed NN-Degree allows us to do training-free NAS within one second and build an accuracy predictor by training as few as 25 samples out of a vast search space with more than 63 billion configurations. Second, by performing inference on the target hardware, we fine-tune and validate our analytical models to estimate the latency, area, and energy consumption of various DNN architectures while executing standard ML datasets. Third, we construct a hierarchical algorithm based on simplicial homology global optimization (SHGO) to optimize the model-architecture co-design process, while considering the area, latency, and energy consumption of the target hardware. We demonstrate that, compared to the state-of-the-art NAS approaches, our proposed hierarchical SHGO-based algorithm enables more than four orders of magnitude speedup (specifically, the execution time of the proposed algorithm is about 0.1 seconds). Finally, our experimental evaluations show that FLASH is easily transferable to different hardware architectures, thus enabling us to do NAS on a Raspberry Pi-3B processor in less than 3 seconds.  more » « less
Award ID(s):
2007284
NSF-PAR ID:
10380968
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
20
Issue:
5s
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sparse deep neural networks (DNNs) have the potential to deliver compelling performance and energy efficiency without significant accuracy loss. However, their benefits can quickly diminish if their training is oblivious to the target hardware. For example, fewer critical connections can have a significant overhead if they translate into long-distance communication on the target hardware. Therefore, hardware-aware sparse training is needed to leverage the full potential of sparse DNNs. To this end, we propose a novel and comprehensive communication-aware sparse DNN optimization framework for tile-based in-memory computing (IMC) architectures. The proposed technique, CANNON first maps the DNN layers onto the tiles of the target architecture. Then, it replaces the fully connected and convolutional layers with communication-aware sparse connections. After that, CANNON optimizes the communication cost with minimal impact on the DNN accuracy. Extensive experimental evaluations with a wide range of DNNs and datasets show up to 3.0× lower communication energy, 3.1× lower communication latency, and 6.8× lower energy-delay product compared to state-of-the-art pruning approaches with a negligible impact on the classification accuracy on IMC-based machine learning accelerators. 
    more » « less
  2. The success of DL can be attributed to hours of parameter and architecture tuning by human experts. Neural Architecture Search (NAS) techniques aim to solve this problem by automating the search procedure for DNN architectures making it possible for non-experts to work with DNNs. Specifically, One-shot NAS techniques have recently gained popularity as they are known to reduce the search time for NAS techniques. One-Shot NAS works by training a large template network through parameter sharing which includes all the candidate NNs. This is followed by applying a procedure to rank its components through evaluating the possible candidate architectures chosen randomly. However, as these search models become increasingly powerful and diverse, they become harder to understand. Consequently, even though the search results work well, it is hard to identify search biases and control the search progression, hence a need for explainability and human-in-the-loop (HIL) One-Shot NAS. To alleviate these problems, we present NAS-Navigator, a visual analytics (VA) system aiming to solve three problems with One-Shot NAS; explainability, HIL design, and performance improvements compared to existing state-of-the-art (SOTA) techniques. NAS-Navigator gives full control of NAS back in the hands of the users while still keeping the perks of automated search, thus assisting non-expert users. Analysts can use their domain knowledge aided by cues from the interface to guide the search. Evaluation results confirm the performance of our improved One-Shot NAS algorithm is comparable to other SOTA techniques. While adding Visual Analytics (VA) using NAS-Navigator shows further improvements in search time and performance. We designed our interface in collaboration with several deep learning researchers and evaluated NAS-Navigator through a control experiment and expert interviews. 
    more » « less
  3. Model compression is an important technique to facilitate efficient embedded and hardware implementations of deep neural networks (DNNs), a number of prior works are dedicated to model compression techniques. The target is to simultaneously reduce the model storage size and accelerate the computation, with minor effect on accuracy. Two important categories of DNN model compression techniques are weight pruning and weight quantization. The former leverages the redundancy in the number of weights, whereas the latter leverages the redundancy in bit representation of weights. These two sources of redundancy can be combined, thereby leading to a higher degree of DNN model compression. However, a systematic framework of joint weight pruning and quantization of DNNs is lacking, thereby limiting the available model compression ratio. Moreover, the computation reduction, energy efficiency improvement, and hardware performance overhead need to be accounted besides simply model size reduction, and the hardware performance overhead resulted from weight pruning method needs to be taken into consideration. To address these limitations, we present ADMM-NN, the first algorithm-hardware co-optimization framework of DNNs using Alternating Direction Method of Multipliers (ADMM), a powerful technique to solve non-convex optimization problems with possibly combinatorial constraints. The first part of ADMM-NN is a systematic, joint framework of DNN weight pruning and quantization using ADMM. It can be understood as a smart regularization technique with regularization target dynamically updated in each ADMM iteration, thereby resulting in higher performance in model compression than the state-of-the-art. The second part is hardware-aware DNN optimizations to facilitate hardware-level implementations. We perform ADMM-based weight pruning and quantization considering (i) the computation reduction and energy efficiency improvement, and (ii) the hardware performance overhead due to irregular sparsity. The first requirement prioritizes the convolutional layer compression over fully-connected layers, while the latter requires a concept of the break-even pruning ratio, defined as the minimum pruning ratio of a specific layer that results in no hardware performance degradation. Without accuracy loss, ADMM-NN achieves 85× and 24× pruning on LeNet-5 and AlexNet models, respectively, --- significantly higher than the state-of-the-art. The improvements become more significant when focusing on computation reduction. Combining weight pruning and quantization, we achieve 1,910× and 231× reductions in overall model size on these two benchmarks, when focusing on data storage. Highly promising results are also observed on other representative DNNs such as VGGNet and ResNet-50. We release codes and models at https://github.com/yeshaokai/admm-nn. 
    more » « less
  4. The record-breaking performance of deep neural networks (DNNs) comes with heavy parameter budgets, which leads to external dynamic random access memory (DRAM) for storage. The prohibitive energy of DRAM accesses makes it nontrivial for DNN deployment on resource-constrained devices, calling for minimizing the movements of weights and data in order to improve the energy efficiency. Driven by this critical bottleneck, we present SmartDeal, a hardware-friendly algorithm framework to trade higher-cost memory storage/access for lower-cost computation, in order to aggressively boost the storage and energy efficiency, for both DNN inference and training. The core technique of SmartDeal is a novel DNN weight matrix decomposition framework with respective structural constraints on each matrix factor, carefully crafted to unleash the hardware-aware efficiency potential. Specifically, we decompose each weight tensor as the product of a small basis matrix and a large structurally sparse coefficient matrix whose nonzero elements are readily quantized to the power-of-2. The resulting sparse and readily quantized DNNs enjoy greatly reduced energy consumption in data movement as well as weight storage, while incurring minimal overhead to recover the original weights thanks to the required sparse bit-operations and cost-favorable computations. Beyond inference, we take another leap to embrace energy-efficient training, by introducing several customized techniques to address the unique roadblocks arising in training while preserving the SmartDeal structures. We also design a dedicated hardware accelerator to fully utilize the new weight structure to improve the real energy efficiency and latency performance. We conduct experiments on both vision and language tasks, with nine models, four datasets, and three settings (inference-only, adaptation, and fine-tuning). Our extensive results show that 1) being applied to inference, SmartDeal achieves up to 2.44x improvement in energy efficiency as evaluated using real hardware implementations and 2) being applied to training, SmartDeal can lead to 10.56x and 4.48x reduction in the storage and the training energy cost, respectively, with usually negligible accuracy loss, compared to state-of-the-art training baselines. Our source codes are available at: https://github.com/VITA-Group/SmartDeal. 
    more » « less
  5. Convolutional neural networks (CNNs) are used in numerous real-world applications such as vision-based autonomous driving and video content analysis. To run CNN inference on various target devices, hardware-aware neural architecture search (NAS) is crucial. A key requirement of efficient hardware-aware NAS is the fast evaluation of inference latencies in order to rank different architectures. While building a latency predictor for each target device has been commonly used in state of the art, this is a very time-consuming process, lacking scalability in the presence of extremely diverse devices. In this work, we address the scalability challenge by exploiting latency monotonicity --- the architecture latency rankings on different devices are often correlated. When strong latency monotonicity exists, we can re-use architectures searched for one proxy device on new target devices, without losing optimality. In the absence of strong latency monotonicity, we propose an efficient proxy adaptation technique to significantly boost the latency monotonicity. Finally, we validate our approach and conduct experiments with devices of different platforms on multiple mainstream search spaces, including MobileNet-V2, MobileNet-V3, NAS-Bench-201, ProxylessNAS and FBNet. Our results highlight that, by using just one proxy device, we can find almost the same Pareto-optimal architectures as the existing per-device NAS, while avoiding the prohibitive cost of building a latency predictor for each device. 
    more » « less