skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collaborative Cloud-Edge-Local Offloading for Multi-Component Applications
With the explosion of intelligent and latency-sensitive applications such as AR/VR, remote health and autonomous driving, mobile edge computing (MEC) has emerged as a promising solution to mitigate the high end-to-end latency of mobile cloud computing (MCC). However, the edge servers have significantly less computing capability compared to the resourceful central cloud. Therefore, a collaborative cloud-edge-local offloading scheme is necessary to accommodate both computationally intensive and latency-sensitive mobile applications. The coexistence of central cloud, edge servers and the mobile device (MD), forming a multi-tiered heterogeneous architecture, makes the optimal application deployment very challenging especially for multi-component applications with component dependencies. This paper addresses the problem of energy and latency efficient application offloading in a collaborative cloud-edgelocal environment. We formulate a multi-objective mixed integer linear program (MILP) with the goal of minimizing the systemwide energy consumption and application end-to-end latency. An approximation algorithm based on LP relaxation and rounding is proposed to address the time complexity. We demonstrate that our approach outperforms existing strategies in terms of application request acceptance ratio, latency and system energy consumption.  more » « less
Award ID(s):
2127605
PAR ID:
10381004
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of Sixth ACM/IEEE Symposium on Edge Computing - The 2nd Workshop on Edge Computing and Communications(EdgeComm 2021)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the era of pervasive digital connectivity, intelligent surveillance systems (ISS) have become essential tools for ensuring public safety, protecting critical infrastructure, and deterring security threats in various environments. The current state of these systems heavily relies on the computational capabilities of mobile devices for tasks such as real-time video analysis, object detection, and tracking. However, the limited processing power and energy constraints of these devices hinder their ability to perform these tasks efficiently and effectively. The dynamic nature of the surveillance environment also adds complexity to the task-offloading process. To address this issue, mobile edge computing (MEC) comes into play by offering edge servers with higher computational capabilities and proximity to mobile devices. It enables ISS by offloading computationally intensive tasks from resource-constrained mobile devices to nearby MEC servers. Therefore, in this paper, we propose and implement an energy-efficient and cost-effective task-offloading framework in the MEC environment. The amalgamation of binary and partial task-offloading strategies is used to achieve a cost-effective and energy-efficient system. We also compare the proposed framework in MEC with mobile cloud computing (MCC) environments. The proposed framework addresses the challenge of achieving energy-efficient and cost-effective solutions in the context of MEC for ISS. The iFogSim simulator is used for implementation and simulation purposes. The simulation results show that the proposed framework reduces latency, cost, execution time, network usage, and energy consumption. 
    more » « less
  2. Mobile devices supporting the "Internet of Things" (IoT), often have limited capabilities in computation, battery energy, and storage space, especially to support resource-intensive applications involving virtual reality (VR), augmented reality (AR), multimedia delivery and artificial intelligence (AI), which could require broad bandwidth, low response latency and large computational power. Edge cloud or edge computing is an emerging topic and technology that can tackle the deficiency of the currently centralized-only cloud computing model and move the computation and storage resource closer to the devices in support of the above-mentioned applications. To make this happen, efficient coordination mechanisms and “offloading” algorithms are needed to allow the mobile devices and the edge cloud to work together smoothly. In this survey paper, we investigate the key issues, methods, and various state-of-the-art efforts related to the offloading problem. We adopt a new characterizing model to study the whole process of offloading from mobile devices to the edge cloud. Through comprehensive discussions, we aim to draw an overall “big picture” on the existing efforts and research directions. Our study also indicates that the offloading algorithms in edge cloud have demonstrated profound potentials for future technology and application development. 
    more » « less
  3. Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce a densely-distributed edge resource model that leverages capacity-constrained volunteer edge nodes to support elastic computation offloading. Our model also enables the use of geo-distributed edge nodes to further support elasticity. Collectively, these features raise the issue of edge selection. We present a distributed edge selection approach that relies on client-centric views of available edge nodes to optimize average end-to-end latency, with considerations of system heterogeneity, resource contention and node churn. Elasticity is achieved by fine-grained performance probing, dynamic load balancing, and proactive multi-edge node connections per client. Evaluations are conducted in both real-world volunteer environments and emulated platforms to show how a common edge application, namely AR-based cognitive assistance, can benefit from our approach and deliver low-latency responses to distributed users at scale. 
    more » « less
  4. In this paper, we consider a large-scale heterogeneous mobile edge computing system, where each device’s mean computing task arrival rate, mean service rate, mean energy consumption, and mean offloading latency are drawn from different bounded continuous probability distributions to reflect the diverse compute-intensive applications, mobile devices with different computing capabilities and battery efficiencies, and different types of wireless access networks (e.g., 4G/5G cellular networks, WiFi). We consider a class of distributed threshold-based randomized offloading policies and develop a threshold update algorithm based on its computational load, average offloading latency, average energy consumption, and edge server processing time, depending on the server utilization. We show that there always exists a unique Mean-Field Nash Equilibrium (MFNE) in the large-system limit when the task processing times of mobile devices follow an exponential distribution. This is achieved by carefully partitioning the space of mean arrival rates to account for the discrete structure of each device’s optimal threshold. Moreover, we show that our proposed threshold update algorithm converges to the MFNE. Finally, we perform simulations to corroborate our theoretical results and demonstrate that our proposed algorithm still performs well in more general setups based on the collected real-world data and outperforms the well-known probabilistic offloading policy. 
    more » « less
  5. null (Ed.)
    Edge computing has emerged as a popular paradigm for supporting mobile and IoT applications with low latency or high bandwidth needs. The attractiveness of edge computing has been further enhanced due to the recent availability of special-purpose hardware to accelerate specific compute tasks, such as deep learning inference, on edge nodes. In this paper, we experimentally compare the benefits and limitations of using specialized edge systems, built using edge accelerators, to more traditional forms of edge and cloud computing. Our experimental study using edge-based AI workloads shows that today's edge accelerators can provide comparable, and in many cases better, performance, when normalized for power or cost, than traditional edge and cloud servers. They also provide latency and bandwidth benefits for split processing, across and within tiers, when using model compression or model splitting, but require dynamic methods to determine the optimal split across tiers. We find that edge accelerators can support varying degrees of concurrency for multi-tenant inference applications, but lack isolation mechanisms necessary for edge cloud multi-tenant hosting. 
    more » « less