skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Codebook Design for Composite Beamforming in Next-generation mmWave Systems
In pursuance of the unused spectrum in higher frequencies, millimeter wave (mmWave) bands have a pivotal role. However, the high path-loss and poor scattering associated with mmWave communications highlight the necessity of employing effective beamforming techniques. In order to efficiently search for the beam to serve a user and to jointly serve multiple users it is often required to use a composite beam which consists of multiple disjoint lobes. A composite beam covers multiple desired angular coverage intervals (ACIs) and ideally has maximum and uniform gain (smoothness) within each desired ACI, negligible gain (leakage) outside the desired ACIs, and sharp edges. We propose an algorithm for designing such ideal composite codebook by providing an analytical closed-form solution with low computational complexity. There is a fundamental trade-off between the gain, leakage and smoothness of the beams. Our design allows to achieve different values in such trade-off based on changing the design parameters. We highlight the shortcomings of the uniform linear arrays (ULAs) in building arbitrary composite beams. Consequently, we use a recently introduced twin-ULA (TULA) antenna structure to effectively resolve these inefficiencies. Numerical results are used to validate the theoretical findings.  more » « less
Award ID(s):
2127605
PAR ID:
10381006
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (IEEE ECNE 2022)
Page Range / eLocation ID:
1545 to 1550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Millimeter-wave (mmWave) communications is a key enabler towards realizing enhanced Mobile Broadband (eMBB) as a key promise of 5G and beyond, due to the abundance of bandwidth available at mmWave bands. An mmWave coverage map consists of blind spots due to shadowing and fading especially in dense urban environments. Beam-forming employing massive MIMO is primarily used to address high attenuation in the mmWave channel. Due to their ability in manipulating the impinging electromagnetic waves in an energy-efficient fashion, Reconfigurable Intelligent Surfaces (RISs) are considered a great match to complement the massive MIMO systems in realizing the beam-forming task and therefore effectively filling in the mmWave coverage gap. In this paper, we propose a novel RIS architecture, namely RIS-UPA where the RIS elements are arranged in a Uniform Planar Array (UPA). We show how RIS-UPA can be used in an RIS-aided MIMO system to fill the coverage gap in mmWave by forming beams of a custom footprint, with optimized main lobe gain, minimum leakage, and fairly sharp edges. Further, we propose a configuration for RIS-UPA that can support multiple two-way communication pairs, simultaneously. We theoretically obtain closed-form low-complexity solutions for our design and validate our theoretical findings by extensive numerical experiments. 
    more » « less
  2. The highly sparse nature of propagation channels and the restricted use of radio frequency (RF) chains at transceivers limit the performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing reconfigurable antennas to mmWave can offer an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. We present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas, and further simplify the expression by considering the case of large number of reconfiguration states. In addition, we propose a low-complexity algorithm for the reconfiguration state and beam selection, which achieves nearly the same throughput performance as the optimal selection of reconfiguration state and beams by exhaustive search. 
    more » « less
  3. Beamforming techniques are considered as essential parts to compensate severe path losses in millimeter-wave (mmWave) communications. In particular, these techniques adopt large antenna arrays and formulate narrow beams to obtain satisfactory received powers. However, performing accurate beam alignment over narrow beams for efficient link configuration by traditional standard defined beam selection approaches, which mainly rely on channel state information and beam sweeping through exhaustive searching, imposes computational and communications overheads. And, such resulting overheads limit their potential use in vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications involving highly dynamic scenarios. In comparison, utilizing out-of-band contextual information, such as sensing data obtained from sensor devices, provides a better alternative to reduce overheads. This paper presents a deep learning-based solution for utilizing the multi-modality sensing data for predicting the optimal beams having sufficient mmWave received powers so that the best V2I and V2V line-of-sight links can be ensured proactively. The proposed solution has been tested on real-world measured mmWave sensing and communication data, and the results show that it can achieve up to 98.19% accuracies while predicting top-13 beams. Correspondingly, when compared to existing been sweeping approach, the beam sweeping searching space and time overheads are greatly shortened roughly by 79.67% and 91.89%, respectively which confirm a promising solution for beamforming in mmWave enabled communications. 
    more » « less
  4. Modern mmWave systems have limited scalability due to inflexibility in performing frequency multiplexing. All the frequency components in the signal are beamformed to one direction via pencil beams and cannot be streamed to other user directions. We present a new flexible mmWave system called mmFlexible, which enables flexible directional frequency multiplexing. In this system, different frequency components of the mmWave signal are beamformed in multiple arbitrary directions with the same pencil beam. Our system makes two key contributions: (1) We propose a novel mmWave front-end architecture, called a delay-phased array, that utilizes a variable delay and variable phase element to create the desired frequency-direction response. (2) We propose a novel algorithm called FSDA (Frequency-space to delay-antenna) to estimate delay and phase values for the real-time operation of the delay-phased array. Through evaluations using mmWave channel traces, we demonstrate that mmFlexible achieves a 60-150% reduction in worst-case latency compared to the baselines. 
    more » « less
  5. Communication over large-bandwidth millimeter wave (mmWave) spectrum bands can provide high data rate, through utilizing highgain beamforming vectors (briefly, beams). Real-time tracking of such beams, which is needed for supporting mobile users, can be accomplished through developing machine learning (ML) models. While computer simulations were used to show the success of such ML models, experimental results are still limited. Consequently in this paper, we verify the effectiveness of mmWave beam tracking over the open-source COSMOS testbed. We particularly utilize a multi-armed bandit (MAB) scheme, which follows reinforcement learning (RL) approach. In our MAB-based beam tracking model, the beam selection is modeled as an action, while the reward of the algorithm is modeled through the link throughput. Experimental results, conducted over the 60-GHz COSMOS-based mobile platform, show that the MAB-based beam tracking learning model can achieve almost 92% throughput compared to the Genie-aided beams after a few learning samples. 
    more » « less