ABSTRACT We simulate shaking in Tacoma, Washington, and surrounding areas from Mw 6.5 and 7.0 earthquakes on the Tacoma fault. Ground motions are directly modeled up to 2.5 Hz using kinematic, finite-fault sources; a 3D seismic velocity model considering regional geology; and a model mesh with 30 m sampling at the ground surface. In addition, we explore how adjustments to the seismic velocity model affect predicted shaking over a range of periods. These adjustments include the addition of a region-specific geotechnical gradient, surface topography, and a fault damage zone. We find that the simulated shaking tends to be near estimates from empirical ground-motion models (GMMs). However, long-period (T = 5.0 s) shaking within the Tacoma basin is typically underpredicted by the GMMs. The fit between simulated and GMM-derived short-period (T = 0.5 s) shaking is significantly improved with the addition of the geotechnical gradient. From comparing different Mw 6.5 earthquake scenarios, we also find that the response of the Tacoma basin is sensitive to the azimuth of incoming seismic waves. In adding surface topography to the simulation, we find that average ground motion is similar to that produced from the nontopography model. However, shaking is often amplified at topographic highs and deamplified at topographic lows, and the wavefield undergoes extensive scattering. Adding a fault damage zone has the effect of amplifying short-period shaking adjacent to the fault, while reducing far-field shaking. Intermediate-period shaking is amplified within the Tacoma basin, likely due to enhanced surface-wave generation attributable to the fault damage zone waveguide. When applied in the same model, the topography and fault damage zone adjustments often enhance or reduce the effects of one another, adding further complexity to the wavefield. These results emphasize the importance of improving near-surface velocity model resolution as waveform simulations progress toward higher frequencies.
more »
« less
Analysis of Fault Zone Resonance Modes Recorded by a Dense Seismic Array Across the San Jacinto Fault Zone at Blackburn Saddle
Abstract We present observations and modeling of spatial eigen‐functions of resonating waves within fault zone waveguide, using data recorded on a dense seismic array across the San Jacinto Fault Zone (SJFZ) in southern California. The array consists of 5‐Hz geophones that cross the SJFZ with ~10–30 m spacing at the Blackburn Saddle near the Hemet Stepover. Wavefield snapshots after theSwave arrival are consistent for more than 50 near‐fault events, suggesting that this pattern is controlled by the fault zone structure rather than source properties. Data from example event with high signal to noise ratio show three main frequency peaks at ~1.3, ~2.0, and ~2.8 Hz in the amplitude spectra of resonance waves averaged over stations near the fault. The data are modeled with analytical expressions for eigen‐functions of resonance waves in a low‐velocity layer (fault zone) between two quarter‐spaces. Using a grid search‐based method, we investigate the possible width of the waveguide, location within the array, and shear wave velocities of the media that fit well the resonance signal at ~1.3 Hz. The results indicate a ~300 m wide damaged fault zone layer with ~65%Swave velocity reduction compared to the host rock. The SW edge of the low‐velocity zone is near the mapped fault surface trace, indicating that the damage zone is asymmetrically located at the regionally faster NE crustal block. The imaging resolution of the fault zone structure can be improved by modeling fault zone resonance modes and trapped waves together.
more »
« less
- Award ID(s):
- 1753362
- PAR ID:
- 10381011
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 125
- Issue:
- 10
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fault zone complexities contain important information about factors controlling earthquake dynamic rupture. High‐resolution fault zone imaging requires high‐quality data from dense arrays and new seismic imaging techniques that can utilize large portions of recorded waveforms. Recently, the emerging Distributed Acoustic Sensing (DAS) technique has enabled near‐surface imaging by utilizing existing telecommunication infrastructure and anthropogenic noise sources. With dense sensors at several meters' spacing, the unaliased wavefield can provide unprecedented details for fault zones. In this work, we use a DAS array converted from a 10‐km underground fiber‐optic cable across Ridgecrest City, California. We report clear acausal and coda signals in ambient noise cross‐correlations caused by surface‐to‐surface wave scattering. We use these scattering‐related waves to locate and characterize potential faults. The mapped fault locations are generally consistent with those in the United States Geological Survey Quaternary Fault database of the United States but are more accurate than the extrapolated ones. We also use waveform modeling to infer that a 35 m wide, 90 m deep fault with 30% velocity reduction can best fit the observed scattered coda waves for one of the identified fault zones. These findings demonstrate the potential of DAS for passive imaging of fine‐scale faults in an urban environment.more » « less
-
Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. Hence, our research aims to develop a novel method to image fault damage zones using high-frequency P-waves reflected within them. Previous studies have demonstrated that fault damage zones can amplify high-frequency waves along directions close to fault strike. The associated frequency band of the amplified secondary peak may be used to estimate the width and velocity contrast of the fault damage zone. Here we use the stacked P-wave velocity spectra of M1.5–3 earthquakes in the Parkfield region to identify the azimuthal variation in high-frequency energy. Our preliminary results show that for 62% of the Parkfield clusters, stations close to the fault strike record more high-frequency energies around 10–20 Hz. The frequency band is lower than what we observed for the 2019 Ridgecrest earthquakes region, and corresponds to a fault zone velocity reduction of ~50% assuming a fault zone width of 200m. We also observe along-strike differences in our results, where clusters along some fault sections show greater azimuthal variation than clusters in other sections. Moreover, to account for the possible effects of site conditions underneath the stations, we will quantify their effects using the spectra of regional earthquakes. We will compute the root-mean-square spectra at different frequency bands for each event, and calculate the average deviation in spectra at each station. We can then generate an empirical correction term for each station as a function of frequency. By applying these corrections to the stacked P-wave velocity spectra of our earthquake clusters, we can separate the contribution of site effects from fault zone structures. Our results demonstrate that the new method can be applied to search for fault damage zone structures in different tectonic regions with broadband stations in order to enhance our understanding of the co-evolution of fault zones and earthquake cycle.more » « less
-
ABSTRACT We explore the response of ground motions to topography during large crustal fault earthquakes by simulating several magnitude 6.5–7.0 rupture scenarios on the Seattle fault, Washington State. Kinematic simulations are run using a 3D spectral element code and a detailed seismic velocity model for the Puget Sound region. This model includes realistic surface topography and a near-surface low-velocity layer; a mesh spacing of ∼30 m at the surface allows modeling of ground motions up to 3 Hz. We simulate 20 earthquake scenarios using different slip distributions and hypocenter locations on a planar fault surface. Results indicate that average ground motions in simulations with and without topography are similar. However, shaking amplification is common at topographic highs, and more than a quarter of all sites experience short-period (≤2 s) ground-motion amplification greater than 25%–35%, compared with models without topography. Comparisons of peak ground velocity at the top and bottom of topographic features demonstrate that amplification is sensitive to period, with the greatest amplifications typically manifesting near a topographic feature’s estimated resonance frequency and along azimuths perpendicular to its primary axis of elongation. However, interevent variability in topographic response can be significant, particularly at shorter periods (<1 s). We do not observe a clear relationship between source centroid-to-site azimuths and the strength of topographic amplification. Overall, our results suggest that although topographic resonance does influence the average ground motions, other processes (e.g., localized focusing and scattering) also play a significant role in determining topographic response. However, the amount of consistent, significant amplification due to topography suggests that topographic effects should likely be considered in some capacity during seismic hazard studies.more » « less
-
null (Ed.)Abstract We image the shallow structure across the East Bench segment of the Wasatch fault system in Salt Lake City using ambient noise recorded by a month-long temporary linear seismic array of 32 stations. We first extract Rayleigh-wave signals between 0.4 and 1.1 s period using noise cross correlation. We then apply double beamforming to enhance coherent cross-correlation signals and at the same time measure frequency-dependent phase velocities across the array. For each location, based on available dispersion measurements, we perform an uncertainty-weighted least-squares inversion to obtain a 1D VS model from the surface to 400 m depth. We put all piece-wise continuous 1D models together to construct the final 2D VS model. The model reveals high velocities to the east of the Pleistocene Lake Bonneville shoreline reflecting thinner sediments and low velocities particularly in the top 200 m to the west corresponding to the Salt Lake basin sediments. In addition, there is an ∼400-m-wide low-velocity zone that narrows with depth adjacent to the surface trace of the East Bench fault, which we interpret as a fault-related damage zone. The damage zone is asymmetric, wider on the hanging wall (western) side and with greater velocity reduction. These results provide important constraints on normal-fault earthquake mechanics, Wasatch fault earthquake behavior, and urban seismic hazard in Salt Lake City.more » « less
An official website of the United States government
