Abstract Fault zone structures at many scales largely dictate earthquake ruptures and are controlled by the geologic setting and slip history. Characterizations of these structures at diverse scales inform better understandings of earthquake hazards and earthquake phenomenology. However, characterizing fault zones at sub‐kilometer scales has historically been challenging, and these challenges are exacerbated in urban areas, where locating and characterizing faults is critical for hazard assessment. We present a new procedure for characterizing fault zones at sub‐kilometer scales using distributed acoustic sensing (DAS). This technique involves the backprojection of the DAS‐measured scattered wavefield generated by natural earthquakes. This framework provides a measure of the strength of scattering along a DAS array and thus constrains the positions and properties of local scatterers. The high spatial sampling of DAS arrays makes possible the resolution of these scatterers at the scale of tens of meters over distances of kilometers. We test this methodology using a DAS array in Ridgecrest, CA which recorded much of the 2019 Mw7.1 Ridgecrest earthquake aftershock sequence. We show that peaks in scattering along the DAS array are spatially correlated with mapped faults in the region and that the strength of scattering is frequency‐dependent. We present a model of these scatterers as shallow, low‐velocity zones that is consistent with how we may expect faults to perturb the local velocity structure. We show that the fault zone geometry can be constrained by comparing our observations with synthetic tests.
more »
« less
Fault Zone Imaging With Distributed Acoustic Sensing: Surface‐To‐Surface Wave Scattering
Abstract Fault zone complexities contain important information about factors controlling earthquake dynamic rupture. High‐resolution fault zone imaging requires high‐quality data from dense arrays and new seismic imaging techniques that can utilize large portions of recorded waveforms. Recently, the emerging Distributed Acoustic Sensing (DAS) technique has enabled near‐surface imaging by utilizing existing telecommunication infrastructure and anthropogenic noise sources. With dense sensors at several meters' spacing, the unaliased wavefield can provide unprecedented details for fault zones. In this work, we use a DAS array converted from a 10‐km underground fiber‐optic cable across Ridgecrest City, California. We report clear acausal and coda signals in ambient noise cross‐correlations caused by surface‐to‐surface wave scattering. We use these scattering‐related waves to locate and characterize potential faults. The mapped fault locations are generally consistent with those in the United States Geological Survey Quaternary Fault database of the United States but are more accurate than the extrapolated ones. We also use waveform modeling to infer that a 35 m wide, 90 m deep fault with 30% velocity reduction can best fit the observed scattered coda waves for one of the identified fault zones. These findings demonstrate the potential of DAS for passive imaging of fine‐scale faults in an urban environment.
more »
« less
- Award ID(s):
- 1848166
- PAR ID:
- 10445235
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 127
- Issue:
- 6
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present observations and modeling of spatial eigen‐functions of resonating waves within fault zone waveguide, using data recorded on a dense seismic array across the San Jacinto Fault Zone (SJFZ) in southern California. The array consists of 5‐Hz geophones that cross the SJFZ with ~10–30 m spacing at the Blackburn Saddle near the Hemet Stepover. Wavefield snapshots after theSwave arrival are consistent for more than 50 near‐fault events, suggesting that this pattern is controlled by the fault zone structure rather than source properties. Data from example event with high signal to noise ratio show three main frequency peaks at ~1.3, ~2.0, and ~2.8 Hz in the amplitude spectra of resonance waves averaged over stations near the fault. The data are modeled with analytical expressions for eigen‐functions of resonance waves in a low‐velocity layer (fault zone) between two quarter‐spaces. Using a grid search‐based method, we investigate the possible width of the waveguide, location within the array, and shear wave velocities of the media that fit well the resonance signal at ~1.3 Hz. The results indicate a ~300 m wide damaged fault zone layer with ~65%Swave velocity reduction compared to the host rock. The SW edge of the low‐velocity zone is near the mapped fault surface trace, indicating that the damage zone is asymmetrically located at the regionally faster NE crustal block. The imaging resolution of the fault zone structure can be improved by modeling fault zone resonance modes and trapped waves together.more » « less
-
Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. The properties and structure of fault damage zones are often characterized using dense arrays of seismic stations located directly above the faults. However, such arrays may not always be available. Hence, our research aims to develop a novel method to image fault damage zones using broadband stations at relatively larger distances. Previous kinematic simulations and a case study of the 2003 Big Bear earthquake sequence demonstrated that fault damage zones can act as effective waveguides, amplifying high-frequency waves along directions close to fault strike via multiple reflections within the fault damage zone. The amplified high-frequency energy can be observed by stacking P-wave spectra of earthquake clusters with highly-similar waveforms (Huang et al., 2016), and the frequency band which is amplified may be used to estimate the width and velocity contrast of the fault damage zone. We attempt to identify the high-frequency peak associated with fault zone waves in stacked spectra by conducting a large-scale study of small earthquakes (M1.5–3). We use high quality broadband data from seismic stations at hypocentral distances of 20-80 km in the 2019 Ridgecrest earthquake regions. First, we group the Ridgecrest earthquakes in clusters by their locations and their waveform similarity, and then stack their velocity spectra to average the source effects of individual earthquakes. Our results show that the stations close to the fault strike record more high-frequency energies around the characteristic frequency of fault zone reflections. We find that the increase in the amount of high-frequencies is consistent across clusters with average magnitudes ranging from 1.6-2.4, which suggests that the azimuthal variation in spectra is caused by fault zone amplification rather than rupture directivity. We will apply our method to other fault zones in California, in order to search for fault damage zone structures and estimate their material properties.more » « less
-
Abstract Repeated earthquake cycles produce topography, fault damage zones, and other geologic structures along faults. These geomorphic and structural features indicate the presence of co‐seismic permanent (inelastic) surface deformation, yet a long‐standing question in earthquake research is how much of the co‐seismic deformation field is elastic versus inelastic. These questions arise in part because it is unclear what measurable co‐seismic characteristics, such as off‐fault or distributed surface deformation and cracking, represent true unrecoverable deformation. One emerging descriptor of permanent co‐seismic deformation is surface strain magnitudes inferred from imaging geodesy observations. In this study, we present the surface strain field of the 2013 Mw7.7 Baluchistan strike‐slip earthquake in southern Pakistan. We invert co‐seismic displacement fields generated from pixel‐tracking of SPOT‐5 and WorldView optical imagery for co‐seismic surface horizontal strain tensors. We observe that co‐seismic strain field is dominated by negative dilatation strains, indicating that the co‐seismic fault zone contracted during the earthquake. We show that co‐seismic inelastic failure exhibits a relatively consistent width along the rupture that is localized to a zone 100–200 m wide on the hanging wall side. The width of co‐seismic permanent deformation does not correlate with variations in off‐fault deformation or surface geology. Based on comparisons to other recent earthquakes, we posit that the permanent surface strains reflect inelastic deformation of the faults inner damage zone, and that the width of this zone reflects fault maturity.more » « less
-
Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. The properties and structure of fault damage zones are often characterized using dense arrays of seismic stations located directly above the faults. However, such arrays may not always be available. Hence, our research aims to develop a novel method to image fault damage zones using broadband stations at relatively larger distances. Previous kinematic simulations and a case study of the 2003 Big Bear earthquake sequence demonstrated that fault damage zones can act as effective waveguides, amplifying high-frequency waves along directions close to fault strike via multiple reflections within the fault damage zone. The amplified high-frequency energy can be observed using the stacked P-wave spectra of earthquake clusters with highly-similar waveforms (Huang et al., 2016). We attempt to identify the high-frequency peak associated with fault zone waves in stacked spectra by conducting a large-scale study of small earthquakes (M1.5–3). We use high quality broadband data from seismic stations at hypocentral distances of 20-100km in the 2004 Parkfield and 2019 Ridgecrest earthquake regions. First, we group earthquakes in clusters by their locations and their waveform similarity, and then stack their velocity spectra to average the source effects of individual earthquakes. We applied our method to the 2019 Ridgecrest earthquake sequence, and our preliminary results show that stations close to the fault strike tend to record more high-frequency energies around the characteristic frequency of fault zone reflections. The frequency bands in which amplified high-frequency energies are observed may be used to estimate the width and velocity contrast of the fault damage zone. We aim to develop a robust and versatile method that can be used to search for fault damage zone structures and estimate their material properties, in order to shed light on earthquake source processes.more » « less