It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
Given a suitable solution
 Award ID(s):
 1856755
 NSFPAR ID:
 10381012
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 Communications in Mathematical Physics
 Volume:
 397
 Issue:
 3
 ISSN:
 00103616
 Page Range / eLocation ID:
 p. 13871439
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract arXiv:2010.09793 ) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain$$L_{\beta ,\gamma } = {\text {div}}D^{d+1+\gamma n} \nabla $$ ${L}_{\beta ,\gamma}=\text{div}{D}^{d+1+\gamma n}\nabla $ with a uniformly rectifiable boundary$$\Omega \subset {\mathbb {R}}^n$$ $\Omega \subset {R}^{n}$ of dimension$$\Gamma $$ $\Gamma $ , the now usual distance to the boundary$$d < n1$$ $d<n1$ given by$$D = D_\beta $$ $D={D}_{\beta}$ for$$D_\beta (X)^{\beta } = \int _{\Gamma } Xy^{d\beta } d\sigma (y)$$ ${D}_{\beta}{\left(X\right)}^{\beta}={\int}_{\Gamma}{Xy}^{d\beta}d\sigma \left(y\right)$ , where$$X \in \Omega $$ $X\in \Omega $ and$$\beta >0$$ $\beta >0$ . In this paper we show that the Green function$$\gamma \in (1,1)$$ $\gamma \in (1,1)$G for , with pole at infinity, is well approximated by multiples of$$L_{\beta ,\gamma }$$ ${L}_{\beta ,\gamma}$ , in the sense that the function$$D^{1\gamma }$$ ${D}^{1\gamma}$ satisfies a Carleson measure estimate on$$\big  D\nabla \big (\ln \big ( \frac{G}{D^{1\gamma }} \big )\big )\big ^2$$ $D\nabla (ln(\frac{G}{{D}^{1\gamma}})){}^{2}$ . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).$$\Omega $$ $\Omega $ 
Abstract In this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb–Thirring constant when the eigenvalues of a Schrödinger operator
are raised to the power$$\Delta +V(x)$$ $\Delta +V\left(x\right)$ is never given by the onebound state case when$$\kappa $$ $\kappa $ in space dimension$$\kappa >\max (0,2d/2)$$ $\kappa >max(0,2d/2)$ . When in addition$$d\ge 1$$ $d\ge 1$ we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo–Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb–Thirring inequality, in the same spirit as in Part I of this work Gontier et al. (The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground states. Arch. Rat. Mech. Anal, 2021.$$\kappa \ge 1$$ $\kappa \ge 1$https://doi.org/10.1007/s00205021016347 ). In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function. 
Abstract Let
be an elliptically fibered$$X\rightarrow {{\mathbb {P}}}^1$$ $X\to {P}^{1}$K 3 surface, admitting a sequence of Ricciflat metrics collapsing the fibers. Let$$\omega _{i}$$ ${\omega}_{i}$V be a holomorphicSU (n ) bundle overX , stable with respect to . Given the corresponding sequence$$\omega _i$$ ${\omega}_{i}$ of Hermitian–Yang–Mills connections on$$\Xi _i$$ ${\Xi}_{i}$V , we prove that, ifE is a generic fiber, the restricted sequence converges to a flat connection$$\Xi _i_{E}$$ ${\Xi}_{i}{}_{E}$ . Furthermore, if the restriction$$A_0$$ ${A}_{0}$ is of the form$$V_E$$ ${V}_{E}$ for$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j0)$$ ${\oplus}_{j=1}^{n}{O}_{E}({q}_{j}0)$n distinct points , then these points uniquely determine$$q_j\in E$$ ${q}_{j}\in E$ .$$A_0$$ ${A}_{0}$ 
Abstract We explore properties of the family sizes arising in a linear birth process with immigration (BI). In particular, we study the correlation of the number of families observed during consecutive disjoint intervals of time. Letting
S (a ,b ) be the number of families observed in (a ,b ), we study the expected sample variance and its asymptotics forp consecutive sequential samples , for$$S_p =(S(t_0,t_1),\dots , S(t_{p1},t_p))$$ ${S}_{p}=(S({t}_{0},{t}_{1}),\cdots ,S({t}_{p1},{t}_{p}))$ . By conditioning on the sizes of the samples, we provide a connection between$$0=t_0 $0={t}_{0}<{t}_{1}<\cdots <{t}_{p}$ and$$S_p$$ ${S}_{p}$p sequential samples of sizes , drawn from a single run of a Chinese Restaurant Process. Properties of the latter were studied in da Silva et al. (Bernoulli 29:1166–1194, 2023.$$n_1,n_2,\dots ,n_p$$ ${n}_{1},{n}_{2},\cdots ,{n}_{p}$https://doi.org/10.3150/22BEJ1494 ). We show how the continuoustime framework helps to make asymptotic calculations easier than its discretetime counterpart. As an application, for a specific choice of , where the lengths of intervals are logarithmically equal, we revisit Fisher’s 1943 multisampling problem and give another explanation of what Fisher’s model could have meant in the world of sequential samples drawn from a BI process.$$t_1,t_2,\dots , t_p$$ ${t}_{1},{t}_{2},\cdots ,{t}_{p}$ 
Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in
and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathsf {Quasi}\text {}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$ $\mathrm{Quasi}\mathrm{NP}=\mathrm{NTIME}\left[{n}^{{\left(\mathrm{log}n\right)}^{O\left(1\right)}}\right]$ , by showing that$\mathcal { C}$ $C$ admits nontrivial satisfiability and/or$\mathcal { C}$ $C$# SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a nontrivial# SAT algorithm for a circuit class . Say that a symmetric Boolean function${\mathcal C}$ $C$f (x _{1},…,x _{n}) issparse if it outputs 1 onO (1) values of . We show that for every sparse${\sum }_{i} x_{i}$ ${\sum}_{i}{x}_{i}$f , and for all “typical” , faster$\mathcal { C}$ $C$# SAT algorithms for circuits imply lower bounds against the circuit class$\mathcal { C}$ $C$ , which may be$f \circ \mathcal { C}$ $f\circ C$stronger than itself. In particular:$\mathcal { C}$ $C$# SAT algorithms forn ^{k}size circuits running in 2^{n}/$\mathcal { C}$ $C$n ^{k}time (for allk ) implyN E X P does not have circuits of polynomial size.$(f \circ \mathcal { C})$ $(f\circ C)$# SAT algorithms for size$2^{n^{{\varepsilon }}}$ ${2}^{{n}^{\epsilon}}$ circuits running in$\mathcal { C}$ $C$ time (for some$2^{nn^{{\varepsilon }}}$ ${2}^{n{n}^{\epsilon}}$ε > 0) implyQ u a s i N P does not have circuits of polynomial size.$(f \circ \mathcal { C})$ $(f\circ C)$Applying
# SAT algorithms from the literature, one immediate corollary of our results is thatQ u a s i N P does not haveE M A J ∘A C C ^{0}∘T H R circuits of polynomial size, whereE M A J is the “exact majority” function, improving previous lower bounds againstA C C ^{0}[Williams JACM’14] andA C C ^{0}∘T H R [Williams STOC’14], [MurrayWilliams STOC’18]. This is the first nontrivial lower bound against such a circuit class.